File size: 20,151 Bytes
62e9ca6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
# --------------------------------------------------------
# The YiTrans End-to-End Speech Translation System for IWSLT 2022 Offline Shared Task (https://arxiv.org/abs/2206.05777)
# Github source: https://github.com/microsoft/SpeechT5/tree/main/YiTrans
# Copyright (c) 2022 Microsoft
# Licensed under The MIT License [see LICENSE for details]
# Based on fairseq code bases
# https://github.com/facebookresearch/fairseq
# --------------------------------------------------------

import logging
import contextlib
from argparse import Namespace
from typing import Any, Optional

import torch
import torch.nn as nn
import pickle
from dataclasses import dataclass, field
from fairseq import checkpoint_utils, tasks, utils
from fairseq.dataclass import FairseqDataclass
from fairseq.dataclass.utils import convert_namespace_to_omegaconf
from fairseq.models import BaseFairseqModel, FairseqEncoder, register_model
from fairseq.models.hubert.hubert_asr import HubertCtcConfig
from fairseq.tasks import FairseqTask
from omegaconf import II, MISSING

from yitrans_iwslt22.modules import MultimodalTransformerDecoder

logger = logging.getLogger(__name__)

@dataclass
class HubertAsrConfig(HubertCtcConfig):
    # for decoder
    decoder_layerdrop: float = field(
        default=0.1,
        metadata={"help": "probability of dropping a decoder layer in hubert"},
    )
    add_decoder: bool = field(
        default=False,
        metadata={"help": "whether to add decoder for CE Loss on code"},
    )
    reuse_text_emb: bool = field(
        default=False,
        metadata={"help": "reuse text token embeddings instead of initialize randomly"},
    )
    freeze_decoder_updates: int = field(
        default=0,
        metadata={"help": "dont finetune hubert for this many updates"},
    )
    share_decoder_input_output_embed: bool = field(
        default=False,
        metadata={"help": "share decoder input and output embeddings"},
    )
    share_enc_dec_embeddings: bool = field(
        default=False,
        metadata={"help": "share embeddings of (text encoder, text decoder)"},
    )
    share_s2t_t2t_embeddings: bool = field(
        default=False,
        metadata={"help": "share embeddings of (speech2text(code), text2text)"},
    )
    share_ctc_decoder_embed: bool = field(
        default=False,
        metadata={"help": "share ctc and decoder embedding (only when share_decoder_input_output_embed is true)"},
    )
    enc_grad_mult: float = field(
        default=1.0,
        metadata={"help": "reset feature grad mult in hubert to this (only for st2t)"},
    )
    retain_dict_path: Optional[str] = field(
        default=None,
        metadata={"help": "delete embeddings according to this path"},
    )
    load_step2_model_from: Optional[str] = field(
        default=None,
        metadata={
            "help": "load step2 model from"
        },
    )
    load_pretrained_mbart_from: Optional[str] = field(
        default=None,
        metadata={
            "help": "model to take text encoder decoder weights from (for initialization)"
        },
    )
    load_pretrained_w2v_from: Optional[str] = field(
        default=None,
        metadata={
            "help": "model to take speech encoder weights from (for initialization)"
        },
    )
    use_rel_pos_enc: bool = field(
        default=True,
        metadata={"help": "whether to use relative positional encoding"},
    )
    encoder_layers: int = field(
        default=12,
        metadata={"help": "encoder_layers"},
    )
    add_text_encoder: bool = field(
        default=True,
        metadata={"help": "add_text_encoder"},
    )
    add_adaptor: bool = field(
        default=True,
        metadata={"help": "add_adaptor"},
    )
    adaptor_stride: int = field(
        default=2,
        metadata={"help": "adaptor stride"},
    )


@register_model("yitrans_asr", dataclass=HubertAsrConfig)
class YitransASR(BaseFairseqModel):
    def __init__(self, cfg: HubertAsrConfig, w2v_encoder: BaseFairseqModel):
        super().__init__()
        self.cfg = cfg
        self.w2v_encoder = w2v_encoder

        ### in case we need load hubert_step2 model
        if cfg.load_step2_model_from:
            logger.info(f"Loading hubert_step2 pretrained model for finetuning: {cfg.load_step2_model_from}")
            hubert_step2_states = self.w2v_encoder.w2v_model.load_checkpoint(cfg.load_step2_model_from)["model"]
            if cfg.retain_dict_path is not None:
                assert self.w2v_encoder.w2v_model.add_text_modality, "Mustc have text modality if retain dict path"
                logger.info("Cut embedding to a smaller size according to retain dict")
                with open(cfg.retain_dict_path, "rb") as fp:
                    overlap_idxs = pickle.load(fp)
                hubert_step2_states['w2v_encoder.w2v_model.decoder.output_projection.0.weight'] = hubert_step2_states['w2v_encoder.w2v_model.decoder.output_projection.0.weight'][overlap_idxs]
                hubert_step2_states["w2v_encoder.w2v_model.decoder.embed_tokens_list.0.weight"] = hubert_step2_states["w2v_encoder.w2v_model.decoder.embed_tokens_list.0.weight"][overlap_idxs]
                hubert_step2_states["w2v_encoder.proj.weight"] = hubert_step2_states["w2v_encoder.proj.weight"][overlap_idxs]
            try:
                self.load_state_dict(hubert_step2_states, strict=True)
            except Exception as e:
                logger.warn(e)
                self.load_state_dict(hubert_step2_states, strict=False)

    def upgrade_state_dict_named(self, state_dict, name):
        super().upgrade_state_dict_named(state_dict, name)
        return state_dict

    @classmethod
    def build_model(cls, cfg: HubertAsrConfig, task: FairseqTask):
        """Build a new model instance."""
        w2v_encoder = HubertEncoder(cfg, task.target_dictionary)
        return cls(cfg, w2v_encoder)

    def get_normalized_probs(self, net_output, log_probs, sample=None):
        """Get normalized probabilities (or log probs) from a net's output."""
        if "encoder_out" not in net_output:
            return self.w2v_encoder.get_normalized_probs_decoder(net_output, log_probs, sample)

        if "encoder_out_for_ctc" in net_output:
            logits = net_output["encoder_out_for_ctc"]
        else:
            logits = net_output["encoder_out"]
        
        if isinstance(logits, list):
            logits = logits[0]

        if log_probs:
            return utils.log_softmax(logits.float(), dim=-1)
        else:
            return utils.softmax(logits.float(), dim=-1)

    def get_logits(self, net_output):
        logits = net_output["encoder_out"]
        padding = net_output["encoder_padding_mask"]
        if padding is not None and padding.any():
            padding = padding.T
            logits[padding][..., 0] = 0
            logits[padding][..., 1:] = float("-inf")

        return logits

    def forward(self, **kwargs):
        x = self.w2v_encoder(**kwargs)
        return x

    @property
    def encoder(self):
        return self.w2v_encoder

    def reorder_encoder_out(self, encoder_out, new_order):
        return self.encoder.reorder_encoder_out(encoder_out, new_order)

    @property
    def decoder(self):
        return self.w2v_encoder.w2v_model.decoder


class HubertEncoder(FairseqEncoder):
    def __init__(self, cfg: HubertAsrConfig, tgt_dict=None):
        self.apply_mask = cfg.apply_mask
        logger.info(f"self.apply_mask: {self.apply_mask}")

        arg_overrides = {
            "dropout": cfg.dropout,
            "activation_dropout": cfg.activation_dropout,
            "dropout_input": cfg.dropout_input,
            "attention_dropout": cfg.attention_dropout,
            "mask_length": cfg.mask_length,
            "mask_prob": cfg.mask_prob,
            "mask_selection": cfg.mask_selection,
            "mask_other": cfg.mask_other,
            "no_mask_overlap": cfg.no_mask_overlap,
            "mask_channel_length": cfg.mask_channel_length,
            "mask_channel_prob": cfg.mask_channel_prob,
            "mask_channel_selection": cfg.mask_channel_selection,
            "mask_channel_other": cfg.mask_channel_other,
            "no_mask_channel_overlap": cfg.no_mask_channel_overlap,
            "encoder_layerdrop": cfg.layerdrop,
            "decoder_layerdrop": cfg.decoder_layerdrop,
            "feature_grad_mult": cfg.feature_grad_mult,
            "decoder_dict_size": len(tgt_dict) if cfg.add_decoder else -1,
            "share_decoder_input_output_embed": cfg.share_decoder_input_output_embed,
            "load_pretrained_w2v_from": cfg.load_pretrained_w2v_from,
            "load_pretrained_mbart_from": cfg.load_pretrained_mbart_from,
            "adaptor_stride": cfg.adaptor_stride,
        }

        if cfg.no_pretrained_weights:
            arg_overrides["use_rel_pos_enc"] = cfg.use_rel_pos_enc
            arg_overrides["encoder_layers"] = cfg.encoder_layers
            arg_overrides["add_text_encoder"] = cfg.add_text_encoder
            arg_overrides["share_enc_dec_embeddings"] = cfg.share_enc_dec_embeddings
            arg_overrides["share_s2t_t2t_embeddings"] = cfg.share_s2t_t2t_embeddings
            arg_overrides["add_adaptor"] = cfg.add_adaptor

        if cfg.w2v_args is None:
            state = checkpoint_utils.load_checkpoint_to_cpu(cfg.w2v_path, arg_overrides)
            w2v_args = state.get("cfg", None)
            if w2v_args is None:
                w2v_args = convert_namespace_to_omegaconf(state["args"])
            cfg.w2v_args = w2v_args
        else:
            state = None
            w2v_args = cfg.w2v_args
            if isinstance(w2v_args, Namespace):
                cfg.w2v_args = w2v_args = convert_namespace_to_omegaconf(w2v_args)

        ## in speech_text_joint_to_text, data is loaded by soundfile, which returns without normalization
        if cfg.normalize != w2v_args.task.normalize:
            logger.warn(
                "Fine-tuning works best when data normalization is the same. "
                "Please check that --normalize is set or unset for "
                "both pre-training and here"
            )

        w2v_args.task.data = cfg.data
        if hasattr(w2v_args.task, "text_cfg"):
            w2v_args.task.text_cfg.data_config = None
        w2v_args.task.add_decoder = cfg.add_decoder
        task = tasks.setup_task(w2v_args.task)
        if state is not None and "task_state" in state:
            # This will load the stored "dictionaries" object
            task.load_state_dict(state["task_state"])
        model = task.build_model(w2v_args.model)

        ### delete the embed_tokens and output_projection of decoder
        if state is not None and not cfg.no_pretrained_weights:
            if cfg.retain_dict_path is not None:
                assert model.add_text_modality, "Mustc have text modality if retain dict path"
                logger.info("Cut embedding to a smaller size according to ratin dict")
                with open(cfg.retain_dict_path, "rb") as fp:
                    overlap_idxs = pickle.load(fp)
                state['model']['decoder.output_projection.1.weight'] = state['model']['decoder.output_projection.1.weight'][overlap_idxs]
                state["model"]["decoder.embed_tokens_list.1.weight"] = state["model"]["decoder.embed_tokens_list.1.weight"][overlap_idxs]
            if cfg.reuse_text_emb:
                assert model.add_text_modality, "Mustc have text modality if reuse text embed"
                logger.info("Loading text-text pretrained token-embedding for speech-text finetuning...")
                state["model"]["decoder.embed_tokens_list.0.weight"] = state["model"]["decoder.embed_tokens_list.1.weight"]
                del state["model"]["decoder.embed_tokens_list.1.weight"]
                state["model"]["decoder.output_projection.0.weight"] = state["model"]["decoder.output_projection.1.weight"]
                del state["model"]["decoder.output_projection.1.weight"]
                try:
                    model.load_state_dict(state["model"], strict=True)
                except Exception as e:
                    logger.warn(e)
                    model.load_state_dict(state["model"], strict=False)
            else:
                for pname in list(state["model"].keys()):
                    if pname.startswith("decoder.embed_tokens") or pname.startswith("decoder.output_projection"):
                        del state["model"][pname]
                # set strict=False because we omit some modules
                model.load_state_dict(state["model"], strict=False)

        ### in case we need load mbart embedding into asr embedding
        if cfg.no_pretrained_weights and cfg.load_pretrained_mbart_from and cfg.reuse_text_emb:
            logger.info("Loading mbart pretrained token-embedding for speech-text finetuning...")
            mbart_dec_states = model.decoder.state_dict()
            loading_states = {}
            if cfg.retain_dict_path is not None:
                logger.info("Cut embedding to a smaller size according to ratin dict")
                with open(cfg.retain_dict_path, "rb") as fp:
                    overlap_idxs = pickle.load(fp)
                loading_states["output_projection.0.weight"] = mbart_dec_states['output_projection.1.weight'][overlap_idxs]
                loading_states["embed_tokens_list.0.weight"] = mbart_dec_states['embed_tokens_list.1.weight'][overlap_idxs]
            else:
                loading_states["output_projection.0.weight"] = mbart_dec_states['output_projection.1.weight']
                loading_states["embed_tokens_list.0.weight"] = mbart_dec_states['embed_tokens_list.1.weight']
            model.decoder.load_state_dict(loading_states, strict=False)

        model.remove_pretraining_modules()

        super().__init__(task.source_dictionary)

        d = w2v_args.model.encoder_embed_dim

        self.w2v_model = model

        self.final_dropout = nn.Dropout(cfg.final_dropout)
        self.freeze_finetune_updates = cfg.freeze_finetune_updates
        self.freeze_decoder_updates = cfg.freeze_decoder_updates
        self.num_updates = 0

        if cfg.share_ctc_decoder_embed:
            assert cfg.add_decoder and cfg.share_decoder_input_output_embed, "Must share decoder input and output embed before share ctc and decoder embed"
            if isinstance(self.w2v_model.decoder, MultimodalTransformerDecoder):
                self.proj = nn.Linear(
                    self.w2v_model.decoder.embed_tokens_list[0].weight.shape[1],
                    self.w2v_model.decoder.embed_tokens_list[0].weight.shape[0],
                    bias=False,
                )
                self.proj.weight = self.w2v_model.decoder.embed_tokens_list[0].weight
            else:
                self.proj = nn.Linear(
                    self.w2v_model.decoder.embed_tokens.weight.shape[1],
                    self.w2v_model.decoder.embed_tokens.weight.shape[0],
                    bias=False,
                )
                self.proj.weight = self.w2v_model.decoder.embed_tokens.weight
        elif tgt_dict is not None:
            self.proj = Linear(d, len(tgt_dict))
        elif getattr(cfg, "decoder_embed_dim", d) != d:
            self.proj = Linear(d, cfg.decoder_embed_dim)
        else:
            self.proj = None

    def set_num_updates(self, num_updates):
        """Set the number of parameters updates."""
        super().set_num_updates(num_updates)
        self.num_updates = num_updates

    def forward(self, source, padding_mask, prev_output_tokens=None, tbc=True, **kwargs):

        ft = self.freeze_finetune_updates <= self.num_updates
        w2v_args = {
            "source": source,
            "padding_mask": padding_mask,
            "mask": self.apply_mask and self.training,
            "prev_output_tokens": prev_output_tokens,
            "ft": ft,
        }

        if self.freeze_decoder_updates <= self.num_updates:
            self.w2v_model.add_decoder = True
        else:
            self.w2v_model.add_decoder = False
        
        x, padding_mask, decoder_out = self.w2v_model.extract_features(**w2v_args)
        
        if tbc:
            # B x T x C -> T x B x C
            x = x.transpose(0, 1)

        x = self.final_dropout(x)

        if self.proj:
            x = self.proj(x)

        return {
            "encoder_out": x,  # T x B x C
            "encoder_padding_mask": padding_mask,  # B x T
            "padding_mask": padding_mask,
            "decoder_out": decoder_out,
        }

    def get_normalized_probs_decoder(self, net_output, log_probs, sample=None):
        # net_output['encoder_out'] is a (B, T, D) tensor
        return self.w2v_model.get_normalized_probs(net_output, log_probs, sample)

    def reorder_encoder_out(self, encoder_out, new_order):
        if encoder_out["encoder_out"] is not None:
            if isinstance(encoder_out["encoder_out"], list):
                encoder_out["encoder_out"] = (
                    [] if len(encoder_out["encoder_out"]) == 0
                    else [x.index_select(1, new_order) for x in encoder_out["encoder_out"]]
                )
            else:
                encoder_out["encoder_out"] = encoder_out[
                    "encoder_out"
                ].index_select(1, new_order)
        if encoder_out["encoder_padding_mask"] is not None:
            if isinstance(encoder_out["encoder_padding_mask"], list):
                encoder_out["encoder_padding_mask"] = (
                    [] if len(encoder_out["encoder_padding_mask"]) == 0
                    else [x.index_select(0, new_order) for x in encoder_out["encoder_padding_mask"]]
                )
            else:
                encoder_out["encoder_padding_mask"] = encoder_out[
                    "encoder_padding_mask"
                ].index_select(0, new_order)
        if "decoder_out" in encoder_out and encoder_out["decoder_out"] is not None:
            if isinstance(encoder_out["decoder_out"], list):
                encoder_out["decoder_out"] = (
                    [] if len(encoder_out["decoder_out"]) == 0
                    else [x.index_select(0, new_order) for x in encoder_out["decoder_out"]]
                )
            else:
                encoder_out["decoder_out"] = encoder_out[
                    "decoder_out"
                ].index_select(0, new_order)
        if "encoder_out_for_ctc" in encoder_out and encoder_out["encoder_out_for_ctc"] is not None:
            if isinstance(encoder_out["encoder_out_for_ctc"], list):
                encoder_out["encoder_out_for_ctc"] = (
                    [] if len(encoder_out["encoder_out_for_ctc"]) == 0
                    else [x.index_select(1, new_order) for x in encoder_out["encoder_out_for_ctc"]]
                )
            else:
                encoder_out["encoder_out_for_ctc"] = encoder_out[
                    "encoder_out_for_ctc"
                ].index_select(1, new_order)

        return encoder_out

    def forward_torchscript(self, net_input):
        """A TorchScript-compatible version of forward.
        Encoders which use additional arguments may want to override
        this method for TorchScript compatibility.
        """
        encoder_out = self.w2v_model.forward_torchscript(net_input)
        
        assert self.proj is not None
        encoder_out['encoder_out_for_ctc'] = [self.proj(encoder_out['encoder_out'][0])]
        
        return encoder_out

    def max_positions(self):
        """Maximum input length supported by the encoder."""
        return None

    def upgrade_state_dict_named(self, state_dict, name):
        return state_dict


def Embedding(num_embeddings, embedding_dim, padding_idx):
    m = nn.Embedding(num_embeddings, embedding_dim, padding_idx=padding_idx)
    nn.init.normal_(m.weight, mean=0, std=embedding_dim ** -0.5)
    nn.init.constant_(m.weight[padding_idx], 0)
    return m


def Linear(in_features, out_features, bias=True):
    m = nn.Linear(in_features, out_features, bias)
    nn.init.xavier_uniform_(m.weight)
    if bias:
        nn.init.constant_(m.bias, 0.0)
    return m