Spaces:
Runtime error
Runtime error
# ---------------------------------------------------------------------------- | |
# SpeechLM: Enhanced Speech Pre-Training with Unpaired Textual Data (https://arxiv.org/abs/2209.15329) | |
# Github source: https://github.com/microsoft/SpeechT5/tree/main/SpeechLM | |
# Code based on fairseq: https://github.com/facebookresearch/fairseq/tree/272c4c5197250997148fb12c0db6306035f166a4 | |
# | |
# Copyright (c) 2022 Microsoft | |
# Licensed under The MIT License [see LICENSE for details] | |
# ---------------------------------------------------------------------------- | |
""" | |
Modified from https://github.com/facebookresearch/fairseq/blob/272c4c5197250997148fb12c0db6306035f166a4/fairseq/tasks/translation.py | |
1. Add custom lang_format in function load_langpair_dataset | |
2. If truncate_source (default no), use RandomCropDataset instead of TruncateDataset | |
""" | |
import itertools | |
import logging | |
import os | |
from fairseq.data import ( | |
AppendTokenDataset, | |
LanguagePairDataset, | |
PrependTokenDataset, | |
StripTokenDataset, | |
TruncateDataset, | |
RandomCropDataset, | |
data_utils, | |
indexed_dataset, | |
) | |
from speechlm.data.concat_dataset import ConcatDataset | |
EVAL_BLEU_ORDER = 4 | |
logger = logging.getLogger(__name__) | |
def load_langpair_dataset( | |
data_path, | |
split, | |
src, | |
src_dict, | |
tgt, | |
tgt_dict, | |
combine, | |
dataset_impl, | |
upsample_primary, | |
left_pad_source, | |
left_pad_target, | |
max_source_positions, | |
max_target_positions, | |
prepend_bos=False, | |
load_alignments=False, | |
truncate_source=False, | |
append_source_id=False, | |
num_buckets=0, | |
shuffle=True, | |
pad_to_multiple=1, | |
prepend_bos_src=None, | |
lang_format="[{}]", | |
input_feeding=True, | |
): | |
def split_exists(split, src, tgt, lang, data_path): | |
filename = os.path.join(data_path, "{}.{}-{}.{}".format(split, src, tgt, lang)) | |
return indexed_dataset.dataset_exists(filename, impl=dataset_impl) | |
src_datasets = [] | |
tgt_datasets = [] | |
for k in itertools.count(): | |
split_k = split + (str(k) if k > 0 else "") | |
# infer langcode | |
if split_exists(split_k, src, tgt, src, data_path): | |
prefix = os.path.join(data_path, "{}.{}-{}.".format(split_k, src, tgt)) | |
elif split_exists(split_k, tgt, src, src, data_path): | |
prefix = os.path.join(data_path, "{}.{}-{}.".format(split_k, tgt, src)) | |
else: | |
if k > 0: | |
break | |
else: | |
raise FileNotFoundError( | |
"Dataset not found: {} ({})".format(split, data_path) | |
) | |
src_dataset = data_utils.load_indexed_dataset( | |
prefix + src, src_dict, dataset_impl | |
) | |
if truncate_source: | |
src_dataset = AppendTokenDataset( | |
RandomCropDataset( | |
StripTokenDataset(src_dataset, src_dict.eos()), | |
max_source_positions - 1, | |
), | |
src_dict.eos(), | |
) | |
src_datasets.append(src_dataset) | |
tgt_dataset = data_utils.load_indexed_dataset( | |
prefix + tgt, tgt_dict, dataset_impl | |
) | |
if tgt_dataset is not None: | |
tgt_datasets.append(tgt_dataset) | |
logger.info( | |
"{} {} {}-{} {} examples".format( | |
data_path, split_k, src, tgt, len(src_datasets[-1]) | |
) | |
) | |
if not combine: | |
break | |
assert len(src_datasets) == len(tgt_datasets) or len(tgt_datasets) == 0 | |
if len(src_datasets) == 1: | |
src_dataset = src_datasets[0] | |
tgt_dataset = tgt_datasets[0] if len(tgt_datasets) > 0 else None | |
else: | |
sample_ratios = [1] * len(src_datasets) | |
sample_ratios[0] = upsample_primary | |
src_dataset = ConcatDataset(src_datasets, sample_ratios) | |
if len(tgt_datasets) > 0: | |
tgt_dataset = ConcatDataset(tgt_datasets, sample_ratios) | |
else: | |
tgt_dataset = None | |
if prepend_bos: | |
assert hasattr(src_dict, "bos_index") and hasattr(tgt_dict, "bos_index") | |
src_dataset = PrependTokenDataset(src_dataset, src_dict.bos()) | |
if tgt_dataset is not None: | |
tgt_dataset = PrependTokenDataset(tgt_dataset, tgt_dict.bos()) | |
elif prepend_bos_src is not None: | |
logger.info(f"prepending src bos: {prepend_bos_src}") | |
src_dataset = PrependTokenDataset(src_dataset, prepend_bos_src) | |
eos = None | |
if append_source_id: | |
src_dataset = AppendTokenDataset( | |
src_dataset, src_dict.index(lang_format.format(src)) | |
) | |
if tgt_dataset is not None: | |
tgt_dataset = AppendTokenDataset( | |
tgt_dataset, tgt_dict.index(lang_format.format(tgt)) | |
) | |
eos = tgt_dict.index(lang_format.format(tgt)) | |
align_dataset = None | |
if load_alignments: | |
align_path = os.path.join(data_path, "{}.align.{}-{}".format(split, src, tgt)) | |
if indexed_dataset.dataset_exists(align_path, impl=dataset_impl): | |
align_dataset = data_utils.load_indexed_dataset( | |
align_path, None, dataset_impl | |
) | |
tgt_dataset_sizes = tgt_dataset.sizes if tgt_dataset is not None else None | |
return LanguagePairDataset( | |
src_dataset, | |
src_dataset.sizes, | |
src_dict, | |
tgt_dataset, | |
tgt_dataset_sizes, | |
tgt_dict, | |
left_pad_source=left_pad_source, | |
left_pad_target=left_pad_target, | |
align_dataset=align_dataset, | |
eos=eos, | |
num_buckets=num_buckets, | |
shuffle=shuffle, | |
pad_to_multiple=pad_to_multiple, | |
input_feeding=input_feeding, | |
) | |