File size: 5,640 Bytes
62e9ca6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
# ----------------------------------------------------------------------------
# SpeechLM: Enhanced Speech Pre-Training with Unpaired Textual Data (https://arxiv.org/abs/2209.15329)
# Github source: https://github.com/microsoft/SpeechT5/tree/main/SpeechLM
# Code based on fairseq: https://github.com/facebookresearch/fairseq/tree/272c4c5197250997148fb12c0db6306035f166a4
# 
# Copyright (c) 2022 Microsoft
# Licensed under The MIT License [see LICENSE for details]
# ----------------------------------------------------------------------------

"""
    Modified from https://github.com/facebookresearch/fairseq/blob/272c4c5197250997148fb12c0db6306035f166a4/fairseq/tasks/translation.py
    1. Add custom lang_format in function load_langpair_dataset
    2. If truncate_source (default no), use RandomCropDataset instead of TruncateDataset
"""

import itertools
import logging
import os

from fairseq.data import (
    AppendTokenDataset,
    LanguagePairDataset,
    PrependTokenDataset,
    StripTokenDataset,
    TruncateDataset,
    RandomCropDataset,
    data_utils,
    indexed_dataset,
)

from speechlm.data.concat_dataset import ConcatDataset


EVAL_BLEU_ORDER = 4


logger = logging.getLogger(__name__)


def load_langpair_dataset(
    data_path,
    split,
    src,
    src_dict,
    tgt,
    tgt_dict,
    combine,
    dataset_impl,
    upsample_primary,
    left_pad_source,
    left_pad_target,
    max_source_positions,
    max_target_positions,
    prepend_bos=False,
    load_alignments=False,
    truncate_source=False,
    append_source_id=False,
    num_buckets=0,
    shuffle=True,
    pad_to_multiple=1,
    prepend_bos_src=None,
    lang_format="[{}]",
    input_feeding=True,
):
    def split_exists(split, src, tgt, lang, data_path):
        filename = os.path.join(data_path, "{}.{}-{}.{}".format(split, src, tgt, lang))
        return indexed_dataset.dataset_exists(filename, impl=dataset_impl)

    src_datasets = []
    tgt_datasets = []

    for k in itertools.count():
        split_k = split + (str(k) if k > 0 else "")

        # infer langcode
        if split_exists(split_k, src, tgt, src, data_path):
            prefix = os.path.join(data_path, "{}.{}-{}.".format(split_k, src, tgt))
        elif split_exists(split_k, tgt, src, src, data_path):
            prefix = os.path.join(data_path, "{}.{}-{}.".format(split_k, tgt, src))
        else:
            if k > 0:
                break
            else:
                raise FileNotFoundError(
                    "Dataset not found: {} ({})".format(split, data_path)
                )

        src_dataset = data_utils.load_indexed_dataset(
            prefix + src, src_dict, dataset_impl
        )
        if truncate_source:
            src_dataset = AppendTokenDataset(
                RandomCropDataset(
                    StripTokenDataset(src_dataset, src_dict.eos()),
                    max_source_positions - 1,
                ),
                src_dict.eos(),
            )
        src_datasets.append(src_dataset)

        tgt_dataset = data_utils.load_indexed_dataset(
            prefix + tgt, tgt_dict, dataset_impl
        )
        if tgt_dataset is not None:
            tgt_datasets.append(tgt_dataset)

        logger.info(
            "{} {} {}-{} {} examples".format(
                data_path, split_k, src, tgt, len(src_datasets[-1])
            )
        )

        if not combine:
            break

    assert len(src_datasets) == len(tgt_datasets) or len(tgt_datasets) == 0

    if len(src_datasets) == 1:
        src_dataset = src_datasets[0]
        tgt_dataset = tgt_datasets[0] if len(tgt_datasets) > 0 else None
    else:
        sample_ratios = [1] * len(src_datasets)
        sample_ratios[0] = upsample_primary
        src_dataset = ConcatDataset(src_datasets, sample_ratios)
        if len(tgt_datasets) > 0:
            tgt_dataset = ConcatDataset(tgt_datasets, sample_ratios)
        else:
            tgt_dataset = None

    if prepend_bos:
        assert hasattr(src_dict, "bos_index") and hasattr(tgt_dict, "bos_index")
        src_dataset = PrependTokenDataset(src_dataset, src_dict.bos())
        if tgt_dataset is not None:
            tgt_dataset = PrependTokenDataset(tgt_dataset, tgt_dict.bos())
    elif prepend_bos_src is not None:
        logger.info(f"prepending src bos: {prepend_bos_src}")
        src_dataset = PrependTokenDataset(src_dataset, prepend_bos_src)

    eos = None
    if append_source_id:
        src_dataset = AppendTokenDataset(
            src_dataset, src_dict.index(lang_format.format(src))
        )
        if tgt_dataset is not None:
            tgt_dataset = AppendTokenDataset(
                tgt_dataset, tgt_dict.index(lang_format.format(tgt))
            )
        eos = tgt_dict.index(lang_format.format(tgt))

    align_dataset = None
    if load_alignments:
        align_path = os.path.join(data_path, "{}.align.{}-{}".format(split, src, tgt))
        if indexed_dataset.dataset_exists(align_path, impl=dataset_impl):
            align_dataset = data_utils.load_indexed_dataset(
                align_path, None, dataset_impl
            )

    tgt_dataset_sizes = tgt_dataset.sizes if tgt_dataset is not None else None
    return LanguagePairDataset(
        src_dataset,
        src_dataset.sizes,
        src_dict,
        tgt_dataset,
        tgt_dataset_sizes,
        tgt_dict,
        left_pad_source=left_pad_source,
        left_pad_target=left_pad_target,
        align_dataset=align_dataset,
        eos=eos,
        num_buckets=num_buckets,
        shuffle=shuffle,
        pad_to_multiple=pad_to_multiple,
        input_feeding=input_feeding,
    )