File size: 11,786 Bytes
82270d6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
from __future__ import annotations
import gradio as gr
import pathlib
import sys
sys.path.insert(0, 'vtoonify')

from util import load_psp_standalone, get_video_crop_parameter, tensor2cv2
import torch
import torch.nn as nn
import numpy as np
import insightface
import cv2
from model.vtoonify import VToonify
from model.bisenet.model import BiSeNet
import torch.nn.functional as F
from torchvision import transforms
from model.encoder.align_all_parallel import align_face
import gc
import huggingface_hub
import os
import logging
from PIL import Image




# Configure logging
logging.basicConfig(level=logging.INFO)

MODEL_REPO = 'PKUWilliamYang/VToonify'

class Model():
    def __init__(self, device):
        super().__init__()

        self.device = device
        self.style_types = {
            'cartoon1': ['vtoonify_d_cartoon/vtoonify_s026_d0.5.pt', 26],
            'cartoon1-d': ['vtoonify_d_cartoon/vtoonify_s_d.pt', 26],
            'cartoon2-d': ['vtoonify_d_cartoon/vtoonify_s_d.pt', 64],
            'cartoon3-d': ['vtoonify_d_cartoon/vtoonify_s_d.pt', 153],
            'cartoon4': ['vtoonify_d_cartoon/vtoonify_s299_d0.5.pt', 299],
            'cartoon4-d': ['vtoonify_d_cartoon/vtoonify_s_d.pt', 299],
            'cartoon5-d': ['vtoonify_d_cartoon/vtoonify_s_d.pt', 8],
            'comic1-d': ['vtoonify_d_comic/vtoonify_s_d.pt', 28],
            'comic2-d': ['vtoonify_d_comic/vtoonify_s_d.pt', 18],
            'arcane1': ['vtoonify_d_arcane/vtoonify_s000_d0.5.pt', 0],
            'arcane1-d': ['vtoonify_d_arcane/vtoonify_s_d.pt', 0],
            'arcane2': ['vtoonify_d_arcane/vtoonify_s077_d0.5.pt', 77],
            'arcane2-d': ['vtoonify_d_arcane/vtoonify_s_d.pt', 77],
            'caricature1': ['vtoonify_d_caricature/vtoonify_s039_d0.5.pt', 39],
            'caricature2': ['vtoonify_d_caricature/vtoonify_s068_d0.5.pt', 68],
            'pixar': ['vtoonify_d_pixar/vtoonify_s052_d0.5.pt', 52],
            'pixar-d': ['vtoonify_d_pixar/vtoonify_s_d.pt', 52],
            'illustration1-d': ['vtoonify_d_illustration/vtoonify_s054_d_c.pt', 54],
            'illustration2-d': ['vtoonify_d_illustration/vtoonify_s004_d_c.pt', 4],
            'illustration3-d': ['vtoonify_d_illustration/vtoonify_s009_d_c.pt', 9],
            'illustration4-d': ['vtoonify_d_illustration/vtoonify_s043_d_c.pt', 43],
            'illustration5-d': ['vtoonify_d_illustration/vtoonify_s086_d_c.pt', 86],
        }

        self.face_detector = self._create_insightface_detector()
        self.parsingpredictor = self._create_parsing_model()
        self.pspencoder = self._load_encoder()
        self.transform = transforms.Compose([
            transforms.ToTensor(),
            transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]),
        ])

        self.vtoonify, self.exstyle = self._load_default_model()
        self.color_transfer = False
        self.style_name = 'cartoon1'

    def _create_insightface_detector(self):
        # Initialize InsightFace
        app = insightface.app.FaceAnalysis()
        app.prepare(ctx_id=0 if self.device == 'cuda' else -1, det_size=(640, 640))
        return app

    def _create_parsing_model(self):
        parsingpredictor = BiSeNet(n_classes=19)
        parsingpredictor.load_state_dict(torch.load(huggingface_hub.hf_hub_download(MODEL_REPO, 'models/faceparsing.pth'),
                                                    map_location=lambda storage, loc: storage))
        parsingpredictor.to(self.device).eval()
        return parsingpredictor

    def _load_encoder(self) -> nn.Module:
        style_encoder_path = huggingface_hub.hf_hub_download(MODEL_REPO, 'models/encoder.pt')
        return load_psp_standalone(style_encoder_path, self.device)

    def _load_default_model(self) -> tuple:
        vtoonify = VToonify(backbone='dualstylegan')
        vtoonify.load_state_dict(torch.load(huggingface_hub.hf_hub_download(MODEL_REPO,
                                            'models/vtoonify_d_cartoon/vtoonify_s026_d0.5.pt'), 
                                            map_location=lambda storage, loc: storage)['g_ema'])
        vtoonify.to(self.device)
        tmp = np.load(huggingface_hub.hf_hub_download(MODEL_REPO, 'models/vtoonify_d_cartoon/exstyle_code.npy'), allow_pickle=True).item()
        exstyle = torch.tensor(tmp[list(tmp.keys())[26]]).to(self.device)
        with torch.no_grad():  
            exstyle = vtoonify.zplus2wplus(exstyle)
        return vtoonify, exstyle

    def load_model(self, style_type: str) -> tuple:
        if 'illustration' in style_type:
            self.color_transfer = True
        else:
            self.color_transfer = False
        if style_type not in self.style_types.keys():
            return None, 'Oops, wrong Style Type. Please select a valid model.'
        self.style_name = style_type
        model_path, ind = self.style_types[style_type]
        style_path = os.path.join('models', os.path.dirname(model_path), 'exstyle_code.npy')
        self.vtoonify.load_state_dict(torch.load(huggingface_hub.hf_hub_download(MODEL_REPO, 'models/' + model_path), 
                                            map_location=lambda storage, loc: storage)['g_ema'])
        tmp = np.load(huggingface_hub.hf_hub_download(MODEL_REPO, style_path), allow_pickle=True).item()
        exstyle = torch.tensor(tmp[list(tmp.keys())[ind]]).to(self.device)
        with torch.no_grad():  
            exstyle = self.vtoonify.zplus2wplus(exstyle)
        return exstyle, 'Model of %s loaded.' % (style_type)

    def convert_106_to_68(self, landmarks_106):
        # Mapping from 106 landmarks to 68 landmarks
        landmark106to68 = [
            1, 10, 12, 14, 16, 3, 5, 7, 0, 23, 21, 19, 32, 30, 28, 26, 17,  # Face outline
            43, 48, 49, 51, 50,  # Left eyebrow
            102, 103, 104, 105, 101,  # Right eyebrow
            72, 73, 74, 86, 78, 79, 80, 85, 84,  # Nose
            35, 41, 42, 39, 37, 36,  # Left eye
            89, 95, 96, 93, 91, 90,  # Right eye
            52, 64, 63, 71, 67, 68, 61, 58, 59, 53, 56, 55, 65, 66, 62, 70, 69, 57, 60, 54  # Mouth
        ]
        
        # Convert 106 landmarks to 68 landmarks
        landmarks_68 = [landmarks_106[index] for index in landmark106to68]
        
        return landmarks_68

    def detect_and_align_image(self, image: str, top: int, bottom: int, left: int, right: int
                              ) -> tuple[np.ndarray, torch.Tensor, str]:
        if image is None:
            return np.zeros((256,256,3), np.uint8), None, 'Error: fail to load empty file.'
        frame = cv2.imread(image)
        if frame is None:
            return np.zeros((256,256,3), np.uint8), None, 'Error: fail to load the image.'       
        frame = cv2.cvtColor(frame, cv2.COLOR_RGB2BGR)
        return self.detect_and_align(frame, top, bottom, left, right)
    def detect_and_align(self, frame, top, bottom, left, right, return_para=False):
        message = 'Error: no face detected! Please retry or change the photo.'
        instyle = None

        # Use InsightFace for face detection
        faces = self.face_detector.get(frame)
        if len(faces) > 0:
            logging.info(f"Detected {len(faces)} face(s).")
            face = faces[0]
            landmarks_106 = face.landmark_2d_106
            landmarks_68 = self.convert_106_to_68(landmarks_106)

            # Align face based on mapped landmarks
            aligned_face = self.align_face(frame, landmarks_68)
            if aligned_face is not None:
                logging.info(f"Aligned face shape: {aligned_face.shape}")
                with torch.no_grad():
                    I = self.transform(aligned_face).unsqueeze(dim=0).to(self.device)
                    instyle = self.pspencoder(I)
                    instyle = self.vtoonify.zplus2wplus(instyle)
                    message = 'Successfully aligned the face.'
            else:
                logging.warning("Failed to align face.")
                frame = np.zeros((256, 256, 3), np.uint8)
        else:
            logging.warning("No face detected.")
            frame = np.zeros((256, 256, 3), np.uint8)

        if return_para:
            return frame, instyle, message
        return frame, instyle, message

    def align_face(self, image, landmarks):
        # Example alignment logic using 68 landmarks
        eye_left = np.mean(landmarks[36:42], axis=0)
        eye_right = np.mean(landmarks[42:48], axis=0)
        mouth_left = landmarks[48]
        mouth_right = landmarks[54]

        # Calculate transformation parameters
        eye_center = (eye_left + eye_right) / 2
        mouth_center = (mouth_left + mouth_right) / 2
        eye_to_eye = eye_right - eye_left
        eye_to_mouth = mouth_center - eye_center

        # Define the transformation matrix
        x = eye_to_eye - np.flipud(eye_to_mouth) * [-1, 1]
        x /= np.hypot(*x)
        x *= np.hypot(*eye_to_eye) * 2.0
        y = np.flipud(x) * [-1, 1]
        c = eye_center + eye_to_mouth * 0.1
        quad = np.stack([c - x - y, c - x + y, c + x + y, c + x - y])
        qsize = np.hypot(*x) * 2

        # Transform and crop the image
        transform_size = 256
        output_size = 256
        img = Image.fromarray(image)
        img = img.transform((transform_size, transform_size), Image.QUAD, (quad + 0.5).flatten(), Image.BILINEAR)
        if output_size < transform_size:
            img = img.resize((output_size, output_size), Image.ANTIALIAS)

        return np.array(img)

    
    def image_toonify(self, aligned_face: np.ndarray, instyle: torch.Tensor, exstyle: torch.Tensor, style_degree: float, style_type: str) -> tuple:
        if instyle is None or aligned_face is None:
            logging.error("Invalid input: instyle or aligned_face is None.")
            return np.zeros((256, 256, 3), np.uint8), 'Oops, something wrong with the input. Please go to Step 2 and Rescale Image/First Frame again.'
    
        if self.style_name != style_type:
            exstyle, _ = self.load_model(style_type)
        if exstyle is None:
            logging.error("Failed to load style model.")
            return np.zeros((256, 256, 3), np.uint8), 'Oops, something wrong with the style type. Please go to Step 1 and load model again.'
    
        try:
            with torch.no_grad():
               if self.color_transfer:
                   s_w = exstyle
               else:
                   s_w = instyle.clone()
                   s_w[:, :7] = exstyle[:, :7]

            # Ensure the input is resized to 256x256
               aligned_face_resized = cv2.resize(aligned_face, (256, 256))
               x = self.transform(aligned_face_resized).unsqueeze(dim=0).to(self.device)
               logging.info(f"Input to VToonify shape: {x.shape}")
               x_p = F.interpolate(self.parsingpredictor(2 * (F.interpolate(x, scale_factor=2, mode='bilinear', align_corners=False)))[0], 
                                scale_factor=0.5, recompute_scale_factor=False).detach()
               inputs = torch.cat((x, x_p / 16.), dim=1)
               y_tilde = self.vtoonify(inputs, s_w.repeat(inputs.size(0), 1, 1), d_s=style_degree)        
               y_tilde = torch.clamp(y_tilde, -1, 1)
               logging.info(f"Output from VToonify shape: {y_tilde.shape}")
               print('*** Toonify %dx%d image with style of %s' % (y_tilde.shape[2], y_tilde.shape[3], style_type))
        
            return ((y_tilde[0].cpu().numpy().transpose(1, 2, 0) + 1.0) * 127.5).astype(np.uint8), 'Successfully toonify the image with style of %s'%(self.style_name)
    
        except Exception as e:
            logging.error(f"Error during model execution: {e}")
            return np.zeros((256, 256, 3), np.uint8), f"Error during processing: {str(e)}"