Create vtoonify_model.py
Browse files- vtoonify_model.py +248 -0
vtoonify_model.py
ADDED
@@ -0,0 +1,248 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from __future__ import annotations
|
2 |
+
import gradio as gr
|
3 |
+
import pathlib
|
4 |
+
import sys
|
5 |
+
sys.path.insert(0, 'vtoonify')
|
6 |
+
|
7 |
+
from util import load_psp_standalone, get_video_crop_parameter, tensor2cv2
|
8 |
+
import torch
|
9 |
+
import torch.nn as nn
|
10 |
+
import numpy as np
|
11 |
+
import insightface
|
12 |
+
import cv2
|
13 |
+
from model.vtoonify import VToonify
|
14 |
+
from model.bisenet.model import BiSeNet
|
15 |
+
import torch.nn.functional as F
|
16 |
+
from torchvision import transforms
|
17 |
+
from model.encoder.align_all_parallel import align_face
|
18 |
+
import gc
|
19 |
+
import huggingface_hub
|
20 |
+
import os
|
21 |
+
import logging
|
22 |
+
from PIL import Image
|
23 |
+
|
24 |
+
|
25 |
+
|
26 |
+
|
27 |
+
# Configure logging
|
28 |
+
logging.basicConfig(level=logging.INFO)
|
29 |
+
|
30 |
+
MODEL_REPO = 'PKUWilliamYang/VToonify'
|
31 |
+
|
32 |
+
class Model():
|
33 |
+
def __init__(self, device):
|
34 |
+
super().__init__()
|
35 |
+
|
36 |
+
self.device = device
|
37 |
+
self.style_types = {
|
38 |
+
'cartoon1': ['vtoonify_d_cartoon/vtoonify_s026_d0.5.pt', 26],
|
39 |
+
'cartoon1-d': ['vtoonify_d_cartoon/vtoonify_s_d.pt', 26],
|
40 |
+
'cartoon2-d': ['vtoonify_d_cartoon/vtoonify_s_d.pt', 64],
|
41 |
+
'cartoon3-d': ['vtoonify_d_cartoon/vtoonify_s_d.pt', 153],
|
42 |
+
'cartoon4': ['vtoonify_d_cartoon/vtoonify_s299_d0.5.pt', 299],
|
43 |
+
'cartoon4-d': ['vtoonify_d_cartoon/vtoonify_s_d.pt', 299],
|
44 |
+
'cartoon5-d': ['vtoonify_d_cartoon/vtoonify_s_d.pt', 8],
|
45 |
+
'comic1-d': ['vtoonify_d_comic/vtoonify_s_d.pt', 28],
|
46 |
+
'comic2-d': ['vtoonify_d_comic/vtoonify_s_d.pt', 18],
|
47 |
+
'arcane1': ['vtoonify_d_arcane/vtoonify_s000_d0.5.pt', 0],
|
48 |
+
'arcane1-d': ['vtoonify_d_arcane/vtoonify_s_d.pt', 0],
|
49 |
+
'arcane2': ['vtoonify_d_arcane/vtoonify_s077_d0.5.pt', 77],
|
50 |
+
'arcane2-d': ['vtoonify_d_arcane/vtoonify_s_d.pt', 77],
|
51 |
+
'caricature1': ['vtoonify_d_caricature/vtoonify_s039_d0.5.pt', 39],
|
52 |
+
'caricature2': ['vtoonify_d_caricature/vtoonify_s068_d0.5.pt', 68],
|
53 |
+
'pixar': ['vtoonify_d_pixar/vtoonify_s052_d0.5.pt', 52],
|
54 |
+
'pixar-d': ['vtoonify_d_pixar/vtoonify_s_d.pt', 52],
|
55 |
+
'illustration1-d': ['vtoonify_d_illustration/vtoonify_s054_d_c.pt', 54],
|
56 |
+
'illustration2-d': ['vtoonify_d_illustration/vtoonify_s004_d_c.pt', 4],
|
57 |
+
'illustration3-d': ['vtoonify_d_illustration/vtoonify_s009_d_c.pt', 9],
|
58 |
+
'illustration4-d': ['vtoonify_d_illustration/vtoonify_s043_d_c.pt', 43],
|
59 |
+
'illustration5-d': ['vtoonify_d_illustration/vtoonify_s086_d_c.pt', 86],
|
60 |
+
}
|
61 |
+
|
62 |
+
self.face_detector = self._create_insightface_detector()
|
63 |
+
self.parsingpredictor = self._create_parsing_model()
|
64 |
+
self.pspencoder = self._load_encoder()
|
65 |
+
self.transform = transforms.Compose([
|
66 |
+
transforms.ToTensor(),
|
67 |
+
transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]),
|
68 |
+
])
|
69 |
+
|
70 |
+
self.vtoonify, self.exstyle = self._load_default_model()
|
71 |
+
self.color_transfer = False
|
72 |
+
self.style_name = 'cartoon1'
|
73 |
+
|
74 |
+
def _create_insightface_detector(self):
|
75 |
+
# Initialize InsightFace
|
76 |
+
app = insightface.app.FaceAnalysis()
|
77 |
+
app.prepare(ctx_id=0 if self.device == 'cuda' else -1, det_size=(640, 640))
|
78 |
+
return app
|
79 |
+
|
80 |
+
def _create_parsing_model(self):
|
81 |
+
parsingpredictor = BiSeNet(n_classes=19)
|
82 |
+
parsingpredictor.load_state_dict(torch.load(huggingface_hub.hf_hub_download(MODEL_REPO, 'models/faceparsing.pth'),
|
83 |
+
map_location=lambda storage, loc: storage))
|
84 |
+
parsingpredictor.to(self.device).eval()
|
85 |
+
return parsingpredictor
|
86 |
+
|
87 |
+
def _load_encoder(self) -> nn.Module:
|
88 |
+
style_encoder_path = huggingface_hub.hf_hub_download(MODEL_REPO, 'models/encoder.pt')
|
89 |
+
return load_psp_standalone(style_encoder_path, self.device)
|
90 |
+
|
91 |
+
def _load_default_model(self) -> tuple:
|
92 |
+
vtoonify = VToonify(backbone='dualstylegan')
|
93 |
+
vtoonify.load_state_dict(torch.load(huggingface_hub.hf_hub_download(MODEL_REPO,
|
94 |
+
'models/vtoonify_d_cartoon/vtoonify_s026_d0.5.pt'),
|
95 |
+
map_location=lambda storage, loc: storage)['g_ema'])
|
96 |
+
vtoonify.to(self.device)
|
97 |
+
tmp = np.load(huggingface_hub.hf_hub_download(MODEL_REPO, 'models/vtoonify_d_cartoon/exstyle_code.npy'), allow_pickle=True).item()
|
98 |
+
exstyle = torch.tensor(tmp[list(tmp.keys())[26]]).to(self.device)
|
99 |
+
with torch.no_grad():
|
100 |
+
exstyle = vtoonify.zplus2wplus(exstyle)
|
101 |
+
return vtoonify, exstyle
|
102 |
+
|
103 |
+
def load_model(self, style_type: str) -> tuple:
|
104 |
+
if 'illustration' in style_type:
|
105 |
+
self.color_transfer = True
|
106 |
+
else:
|
107 |
+
self.color_transfer = False
|
108 |
+
if style_type not in self.style_types.keys():
|
109 |
+
return None, 'Oops, wrong Style Type. Please select a valid model.'
|
110 |
+
self.style_name = style_type
|
111 |
+
model_path, ind = self.style_types[style_type]
|
112 |
+
style_path = os.path.join('models', os.path.dirname(model_path), 'exstyle_code.npy')
|
113 |
+
self.vtoonify.load_state_dict(torch.load(huggingface_hub.hf_hub_download(MODEL_REPO, 'models/' + model_path),
|
114 |
+
map_location=lambda storage, loc: storage)['g_ema'])
|
115 |
+
tmp = np.load(huggingface_hub.hf_hub_download(MODEL_REPO, style_path), allow_pickle=True).item()
|
116 |
+
exstyle = torch.tensor(tmp[list(tmp.keys())[ind]]).to(self.device)
|
117 |
+
with torch.no_grad():
|
118 |
+
exstyle = self.vtoonify.zplus2wplus(exstyle)
|
119 |
+
return exstyle, 'Model of %s loaded.' % (style_type)
|
120 |
+
|
121 |
+
def convert_106_to_68(self, landmarks_106):
|
122 |
+
# Mapping from 106 landmarks to 68 landmarks
|
123 |
+
landmark106to68 = [
|
124 |
+
1, 10, 12, 14, 16, 3, 5, 7, 0, 23, 21, 19, 32, 30, 28, 26, 17, # Face outline
|
125 |
+
43, 48, 49, 51, 50, # Left eyebrow
|
126 |
+
102, 103, 104, 105, 101, # Right eyebrow
|
127 |
+
72, 73, 74, 86, 78, 79, 80, 85, 84, # Nose
|
128 |
+
35, 41, 42, 39, 37, 36, # Left eye
|
129 |
+
89, 95, 96, 93, 91, 90, # Right eye
|
130 |
+
52, 64, 63, 71, 67, 68, 61, 58, 59, 53, 56, 55, 65, 66, 62, 70, 69, 57, 60, 54 # Mouth
|
131 |
+
]
|
132 |
+
|
133 |
+
# Convert 106 landmarks to 68 landmarks
|
134 |
+
landmarks_68 = [landmarks_106[index] for index in landmark106to68]
|
135 |
+
|
136 |
+
return landmarks_68
|
137 |
+
|
138 |
+
def detect_and_align_image(self, image: str, top: int, bottom: int, left: int, right: int
|
139 |
+
) -> tuple[np.ndarray, torch.Tensor, str]:
|
140 |
+
if image is None:
|
141 |
+
return np.zeros((256,256,3), np.uint8), None, 'Error: fail to load empty file.'
|
142 |
+
frame = cv2.imread(image)
|
143 |
+
if frame is None:
|
144 |
+
return np.zeros((256,256,3), np.uint8), None, 'Error: fail to load the image.'
|
145 |
+
frame = cv2.cvtColor(frame, cv2.COLOR_RGB2BGR)
|
146 |
+
return self.detect_and_align(frame, top, bottom, left, right)
|
147 |
+
def detect_and_align(self, frame, top, bottom, left, right, return_para=False):
|
148 |
+
message = 'Error: no face detected! Please retry or change the photo.'
|
149 |
+
instyle = None
|
150 |
+
|
151 |
+
# Use InsightFace for face detection
|
152 |
+
faces = self.face_detector.get(frame)
|
153 |
+
if len(faces) > 0:
|
154 |
+
logging.info(f"Detected {len(faces)} face(s).")
|
155 |
+
face = faces[0]
|
156 |
+
landmarks_106 = face.landmark_2d_106
|
157 |
+
landmarks_68 = self.convert_106_to_68(landmarks_106)
|
158 |
+
|
159 |
+
# Align face based on mapped landmarks
|
160 |
+
aligned_face = self.align_face(frame, landmarks_68)
|
161 |
+
if aligned_face is not None:
|
162 |
+
logging.info(f"Aligned face shape: {aligned_face.shape}")
|
163 |
+
with torch.no_grad():
|
164 |
+
I = self.transform(aligned_face).unsqueeze(dim=0).to(self.device)
|
165 |
+
instyle = self.pspencoder(I)
|
166 |
+
instyle = self.vtoonify.zplus2wplus(instyle)
|
167 |
+
message = 'Successfully aligned the face.'
|
168 |
+
else:
|
169 |
+
logging.warning("Failed to align face.")
|
170 |
+
frame = np.zeros((256, 256, 3), np.uint8)
|
171 |
+
else:
|
172 |
+
logging.warning("No face detected.")
|
173 |
+
frame = np.zeros((256, 256, 3), np.uint8)
|
174 |
+
|
175 |
+
if return_para:
|
176 |
+
return frame, instyle, message
|
177 |
+
return frame, instyle, message
|
178 |
+
|
179 |
+
def align_face(self, image, landmarks):
|
180 |
+
# Example alignment logic using 68 landmarks
|
181 |
+
eye_left = np.mean(landmarks[36:42], axis=0)
|
182 |
+
eye_right = np.mean(landmarks[42:48], axis=0)
|
183 |
+
mouth_left = landmarks[48]
|
184 |
+
mouth_right = landmarks[54]
|
185 |
+
|
186 |
+
# Calculate transformation parameters
|
187 |
+
eye_center = (eye_left + eye_right) / 2
|
188 |
+
mouth_center = (mouth_left + mouth_right) / 2
|
189 |
+
eye_to_eye = eye_right - eye_left
|
190 |
+
eye_to_mouth = mouth_center - eye_center
|
191 |
+
|
192 |
+
# Define the transformation matrix
|
193 |
+
x = eye_to_eye - np.flipud(eye_to_mouth) * [-1, 1]
|
194 |
+
x /= np.hypot(*x)
|
195 |
+
x *= np.hypot(*eye_to_eye) * 2.0
|
196 |
+
y = np.flipud(x) * [-1, 1]
|
197 |
+
c = eye_center + eye_to_mouth * 0.1
|
198 |
+
quad = np.stack([c - x - y, c - x + y, c + x + y, c + x - y])
|
199 |
+
qsize = np.hypot(*x) * 2
|
200 |
+
|
201 |
+
# Transform and crop the image
|
202 |
+
transform_size = 256
|
203 |
+
output_size = 256
|
204 |
+
img = Image.fromarray(image)
|
205 |
+
img = img.transform((transform_size, transform_size), Image.QUAD, (quad + 0.5).flatten(), Image.BILINEAR)
|
206 |
+
if output_size < transform_size:
|
207 |
+
img = img.resize((output_size, output_size), Image.ANTIALIAS)
|
208 |
+
|
209 |
+
return np.array(img)
|
210 |
+
|
211 |
+
|
212 |
+
def image_toonify(self, aligned_face: np.ndarray, instyle: torch.Tensor, exstyle: torch.Tensor, style_degree: float, style_type: str) -> tuple:
|
213 |
+
if instyle is None or aligned_face is None:
|
214 |
+
logging.error("Invalid input: instyle or aligned_face is None.")
|
215 |
+
return np.zeros((256, 256, 3), np.uint8), 'Oops, something wrong with the input. Please go to Step 2 and Rescale Image/First Frame again.'
|
216 |
+
|
217 |
+
if self.style_name != style_type:
|
218 |
+
exstyle, _ = self.load_model(style_type)
|
219 |
+
if exstyle is None:
|
220 |
+
logging.error("Failed to load style model.")
|
221 |
+
return np.zeros((256, 256, 3), np.uint8), 'Oops, something wrong with the style type. Please go to Step 1 and load model again.'
|
222 |
+
|
223 |
+
try:
|
224 |
+
with torch.no_grad():
|
225 |
+
if self.color_transfer:
|
226 |
+
s_w = exstyle
|
227 |
+
else:
|
228 |
+
s_w = instyle.clone()
|
229 |
+
s_w[:, :7] = exstyle[:, :7]
|
230 |
+
|
231 |
+
# Ensure the input is resized to 256x256
|
232 |
+
aligned_face_resized = cv2.resize(aligned_face, (256, 256))
|
233 |
+
x = self.transform(aligned_face_resized).unsqueeze(dim=0).to(self.device)
|
234 |
+
logging.info(f"Input to VToonify shape: {x.shape}")
|
235 |
+
x_p = F.interpolate(self.parsingpredictor(2 * (F.interpolate(x, scale_factor=2, mode='bilinear', align_corners=False)))[0],
|
236 |
+
scale_factor=0.5, recompute_scale_factor=False).detach()
|
237 |
+
inputs = torch.cat((x, x_p / 16.), dim=1)
|
238 |
+
y_tilde = self.vtoonify(inputs, s_w.repeat(inputs.size(0), 1, 1), d_s=style_degree)
|
239 |
+
y_tilde = torch.clamp(y_tilde, -1, 1)
|
240 |
+
logging.info(f"Output from VToonify shape: {y_tilde.shape}")
|
241 |
+
print('*** Toonify %dx%d image with style of %s' % (y_tilde.shape[2], y_tilde.shape[3], style_type))
|
242 |
+
|
243 |
+
return ((y_tilde[0].cpu().numpy().transpose(1, 2, 0) + 1.0) * 127.5).astype(np.uint8), 'Successfully toonify the image with style of %s'%(self.style_name)
|
244 |
+
|
245 |
+
except Exception as e:
|
246 |
+
logging.error(f"Error during model execution: {e}")
|
247 |
+
return np.zeros((256, 256, 3), np.uint8), f"Error during processing: {str(e)}"
|
248 |
+
|