LofiAmazonSpace / app.py
vshulev's picture
Decrease temperature
973829c
raw
history blame
7.35 kB
from io import BytesIO
import os
import re
import PIL.Image
import pandas as pd
import numpy as np
import gradio as gr
from datasets import load_dataset
import infer
import matplotlib.pyplot as plt
from sklearn.manifold import TSNE
from sklearn.preprocessing import LabelEncoder
import torch
from torch import nn
from transformers import BertConfig, BertForMaskedLM, PreTrainedTokenizerFast
from huggingface_hub import PyTorchModelHubMixin
from pinecone import Pinecone
from config import DEFAULT_INPUTS, MODELS, DATASETS, ID_TO_GENUS_MAP
# We need this for the eco layers because they are too big
PIL.Image.MAX_IMAGE_PIXELS = None
torch.set_grad_enabled(False)
# Configure pinecone
pc = Pinecone(api_key=os.getenv("PINECONE_API_KEY"))
pc_index = pc.Index("amazon")
# Load models
class DNASeqClassifier(nn.Module, PyTorchModelHubMixin):
def __init__(self, bert_model, env_dim, num_classes):
super(DNASeqClassifier, self).__init__()
self.bert = bert_model
self.env_dim = env_dim
self.num_classes = num_classes
self.fc = nn.Linear(768 + env_dim, num_classes)
def forward(self, bert_inputs, env_data):
outputs = self.bert(**bert_inputs)
dna_embeddings = outputs.hidden_states[-1].mean(1)
combined = torch.cat((dna_embeddings, env_data), dim=1)
logits = self.fc(combined)
return logits
tokenizer = PreTrainedTokenizerFast.from_pretrained(MODELS["embeddings"])
embeddings_model = BertForMaskedLM.from_pretrained(MODELS["embeddings"])
classification_model = DNASeqClassifier.from_pretrained(
MODELS["classification"],
bert_model=BertForMaskedLM(
BertConfig(vocab_size=259, output_hidden_states=True),
),
)
embeddings_model.eval()
classification_model.eval()
# Load datasets
ecolayers_ds = load_dataset(DATASETS["ecolayers"])
def set_default_inputs():
return (DEFAULT_INPUTS["dna_sequence"],
DEFAULT_INPUTS["latitude"],
DEFAULT_INPUTS["longitude"])
def preprocess(dna_sequence: str, latitude: float, longitude: float):
"""Prepares app input for downsteram tasks"""
# Preprocess the DNA sequence turning it into an embedding
dna_seq_preprocessed: str = re.sub(r"[^ACGT]", "N", dna_sequence)
dna_seq_preprocessed: str = re.sub(r"N+$", "", dna_sequence)
dna_seq_preprocessed = dna_seq_preprocessed[:660]
dna_seq_preprocessed = " ".join([
dna_seq_preprocessed[i:i+4] for i in range(0, len(dna_seq_preprocessed), 4)
])
dna_embedding: torch.Tensor = embeddings_model(
**tokenizer(dna_seq_preprocessed, return_tensors="pt")
).hidden_states[-1].mean(1).squeeze()
# Preprocess the location data
coords = (float(latitude), float(longitude))
return dna_embedding, coords[0], coords[1]
def tokenize(dna_sequence: str) -> dict[str, torch.Tensor]:
dna_seq_preprocessed: str = re.sub(r"[^ACGT]", "N", dna_sequence)
dna_seq_preprocessed: str = re.sub(r"N+$", "", dna_sequence)
dna_seq_preprocessed = dna_seq_preprocessed[:660]
dna_seq_preprocessed = " ".join([
dna_seq_preprocessed[i:i+4] for i in range(0, len(dna_seq_preprocessed), 4)
])
return tokenizer(dna_seq_preprocessed, return_tensors="pt")
def get_embedding(dna_sequence: str) -> torch.Tensor:
dna_embedding: torch.Tensor = embeddings_model(
**tokenize(dna_sequence)
).hidden_states[-1].mean(1).squeeze()
return dna_embedding
def predict_genus(method: str, dna_sequence: str, latitude: str, longitude: str):
coords = (float(latitude), float(longitude))
if method == "cosine":
embedding = get_embedding(dna_sequence)
result = pc_index.query(
namespace="all",
vector=embedding.tolist(),
top_k=10,
include_metadata=True,
)
top_k = [m["metadata"]["genus"] for m in result["matches"]]
top_k = pd.Series(top_k).value_counts()
top_k = top_k / top_k.sum()
if method == "fine_tuned_model":
bert_inputs = tokenize(dna_sequence)
logits = classification_model(bert_inputs, torch.zeros(1, 7))
temperature = 0.2
probs = torch.softmax(logits / temperature, dim=1).squeeze()
top_k = torch.topk(probs, 10)
top_k = pd.Series(
top_k.values.detach().numpy(),
index=[ID_TO_GENUS_MAP[i] for i in top_k.indices.detach().numpy()]
)
# top_k = pd.Series(top_k.values.detach().numpy(), index=top_k.indices.detach().numpy())
fig, ax = plt.subplots()
ax.bar(top_k.index.astype(str), top_k.values)
ax.set_ylim(0, 1)
ax.set_title("Genus Prediction")
ax.set_xlabel("Genus")
ax.set_ylabel("Probability")
ax.set_xticklabels(top_k.index.astype(str), rotation=90)
fig.subplots_adjust(bottom=0.3)
fig.canvas.draw()
return PIL.Image.frombytes("RGB", fig.canvas.get_width_height(), fig.canvas.tostring_rgb())
with gr.Blocks() as demo:
# Header section
gr.Markdown("# DNA Identifier Tool")
gr.Markdown((
"Welcome to Lofi Amazon Beats' DNA Identifier Tool. "
"Please enter a DNA sequence and the coordinates at which its sample "
"was taken to get started. Click 'I'm feeling lucky' to see use a "
"random sequence."
))
with gr.Row():
with gr.Column():
inp_dna = gr.Textbox(label="DNA", placeholder="e.g. AACAATGTA... (min 200 and max 660 characters)")
with gr.Column():
with gr.Row():
inp_lat = gr.Textbox(label="Latitude", placeholder="e.g. -3.009083")
with gr.Row():
inp_lng = gr.Textbox(label="Longitude", placeholder="e.g. -58.68281")
with gr.Row():
btn_run = gr.Button("Predict")
btn_run.click(
fn=preprocess,
inputs=[inp_dna, inp_lat, inp_lng],
)
btn_defaults = gr.Button("I'm feeling lucky")
btn_defaults.click(fn=set_default_inputs, outputs=[inp_dna, inp_lat, inp_lng])
with gr.Tab("Genus Prediction"):
gr.Interface(
fn=predict_genus,
inputs=[
gr.Dropdown(choices=["cosine", "fine_tuned_model"], value="fine_tuned_model"),
inp_dna,
inp_lat,
inp_lng,
],
outputs=["image"],
)
# with gr.Row():
# gr.Markdown("Make plot or table for Top 5 species")
# with gr.Row():
# genus_out = gr.Dataframe(headers=["DNA Only Pred Genus", "DNA Only Prob", "DNA & Env Pred Genus", "DNA & Env Prob"])
# # btn_run.click(fn=predict_genus, inputs=[inp_dna, inp_lat, inp_lng], outputs=genus_out)
with gr.Tab('DNA Embedding Space Visualizer'):
gr.Markdown("If the highest genus probability is very low for your DNA sequence, we can still examine the DNA embedding of the sequence in relation to known samples for clues.")
with gr.Row() as row:
with gr.Column():
gr.Markdown("Plot of your DNA sequence among other known species clusters.")
# plot = gr.Plot("")
# btn_run.click(fn=tsne_DNA, inputs=[inp_dna, genus_out])
with gr.Column():
gr.Markdown("Plot of the five most common species at your sample coordinate.")
demo.launch()