Spaces:
Runtime error
Runtime error
File size: 7,352 Bytes
2d43134 c79073a e86736e 89a88ac cfbe98d e86736e fa1b7c0 89a88ac 7c30d0a c79073a 2d43134 c79073a 2d43134 c79073a 2d43134 c79073a 3f8dd98 6d06448 cfbe98d 3f8dd98 89a88ac 2d43134 c79073a 2d43134 89a88ac c79073a 2d43134 a83006f 2d43134 89a88ac 2d43134 fa1b7c0 2d43134 89a88ac 2d43134 89a88ac 2d43134 47e4e3e 2d43134 973829c bb0609f 2d43134 bb0609f 2d43134 bb0609f 2d43134 fa1b7c0 3f8dd98 cfbe98d c79073a 89a88ac 2d43134 89a88ac a83006f 2d43134 a83006f a0e49d5 e86736e a0e49d5 2c039db 7c30d0a c79073a fa1b7c0 2c039db fa1b7c0 cfbe98d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 |
from io import BytesIO
import os
import re
import PIL.Image
import pandas as pd
import numpy as np
import gradio as gr
from datasets import load_dataset
import infer
import matplotlib.pyplot as plt
from sklearn.manifold import TSNE
from sklearn.preprocessing import LabelEncoder
import torch
from torch import nn
from transformers import BertConfig, BertForMaskedLM, PreTrainedTokenizerFast
from huggingface_hub import PyTorchModelHubMixin
from pinecone import Pinecone
from config import DEFAULT_INPUTS, MODELS, DATASETS, ID_TO_GENUS_MAP
# We need this for the eco layers because they are too big
PIL.Image.MAX_IMAGE_PIXELS = None
torch.set_grad_enabled(False)
# Configure pinecone
pc = Pinecone(api_key=os.getenv("PINECONE_API_KEY"))
pc_index = pc.Index("amazon")
# Load models
class DNASeqClassifier(nn.Module, PyTorchModelHubMixin):
def __init__(self, bert_model, env_dim, num_classes):
super(DNASeqClassifier, self).__init__()
self.bert = bert_model
self.env_dim = env_dim
self.num_classes = num_classes
self.fc = nn.Linear(768 + env_dim, num_classes)
def forward(self, bert_inputs, env_data):
outputs = self.bert(**bert_inputs)
dna_embeddings = outputs.hidden_states[-1].mean(1)
combined = torch.cat((dna_embeddings, env_data), dim=1)
logits = self.fc(combined)
return logits
tokenizer = PreTrainedTokenizerFast.from_pretrained(MODELS["embeddings"])
embeddings_model = BertForMaskedLM.from_pretrained(MODELS["embeddings"])
classification_model = DNASeqClassifier.from_pretrained(
MODELS["classification"],
bert_model=BertForMaskedLM(
BertConfig(vocab_size=259, output_hidden_states=True),
),
)
embeddings_model.eval()
classification_model.eval()
# Load datasets
ecolayers_ds = load_dataset(DATASETS["ecolayers"])
def set_default_inputs():
return (DEFAULT_INPUTS["dna_sequence"],
DEFAULT_INPUTS["latitude"],
DEFAULT_INPUTS["longitude"])
def preprocess(dna_sequence: str, latitude: float, longitude: float):
"""Prepares app input for downsteram tasks"""
# Preprocess the DNA sequence turning it into an embedding
dna_seq_preprocessed: str = re.sub(r"[^ACGT]", "N", dna_sequence)
dna_seq_preprocessed: str = re.sub(r"N+$", "", dna_sequence)
dna_seq_preprocessed = dna_seq_preprocessed[:660]
dna_seq_preprocessed = " ".join([
dna_seq_preprocessed[i:i+4] for i in range(0, len(dna_seq_preprocessed), 4)
])
dna_embedding: torch.Tensor = embeddings_model(
**tokenizer(dna_seq_preprocessed, return_tensors="pt")
).hidden_states[-1].mean(1).squeeze()
# Preprocess the location data
coords = (float(latitude), float(longitude))
return dna_embedding, coords[0], coords[1]
def tokenize(dna_sequence: str) -> dict[str, torch.Tensor]:
dna_seq_preprocessed: str = re.sub(r"[^ACGT]", "N", dna_sequence)
dna_seq_preprocessed: str = re.sub(r"N+$", "", dna_sequence)
dna_seq_preprocessed = dna_seq_preprocessed[:660]
dna_seq_preprocessed = " ".join([
dna_seq_preprocessed[i:i+4] for i in range(0, len(dna_seq_preprocessed), 4)
])
return tokenizer(dna_seq_preprocessed, return_tensors="pt")
def get_embedding(dna_sequence: str) -> torch.Tensor:
dna_embedding: torch.Tensor = embeddings_model(
**tokenize(dna_sequence)
).hidden_states[-1].mean(1).squeeze()
return dna_embedding
def predict_genus(method: str, dna_sequence: str, latitude: str, longitude: str):
coords = (float(latitude), float(longitude))
if method == "cosine":
embedding = get_embedding(dna_sequence)
result = pc_index.query(
namespace="all",
vector=embedding.tolist(),
top_k=10,
include_metadata=True,
)
top_k = [m["metadata"]["genus"] for m in result["matches"]]
top_k = pd.Series(top_k).value_counts()
top_k = top_k / top_k.sum()
if method == "fine_tuned_model":
bert_inputs = tokenize(dna_sequence)
logits = classification_model(bert_inputs, torch.zeros(1, 7))
temperature = 0.2
probs = torch.softmax(logits / temperature, dim=1).squeeze()
top_k = torch.topk(probs, 10)
top_k = pd.Series(
top_k.values.detach().numpy(),
index=[ID_TO_GENUS_MAP[i] for i in top_k.indices.detach().numpy()]
)
# top_k = pd.Series(top_k.values.detach().numpy(), index=top_k.indices.detach().numpy())
fig, ax = plt.subplots()
ax.bar(top_k.index.astype(str), top_k.values)
ax.set_ylim(0, 1)
ax.set_title("Genus Prediction")
ax.set_xlabel("Genus")
ax.set_ylabel("Probability")
ax.set_xticklabels(top_k.index.astype(str), rotation=90)
fig.subplots_adjust(bottom=0.3)
fig.canvas.draw()
return PIL.Image.frombytes("RGB", fig.canvas.get_width_height(), fig.canvas.tostring_rgb())
with gr.Blocks() as demo:
# Header section
gr.Markdown("# DNA Identifier Tool")
gr.Markdown((
"Welcome to Lofi Amazon Beats' DNA Identifier Tool. "
"Please enter a DNA sequence and the coordinates at which its sample "
"was taken to get started. Click 'I'm feeling lucky' to see use a "
"random sequence."
))
with gr.Row():
with gr.Column():
inp_dna = gr.Textbox(label="DNA", placeholder="e.g. AACAATGTA... (min 200 and max 660 characters)")
with gr.Column():
with gr.Row():
inp_lat = gr.Textbox(label="Latitude", placeholder="e.g. -3.009083")
with gr.Row():
inp_lng = gr.Textbox(label="Longitude", placeholder="e.g. -58.68281")
with gr.Row():
btn_run = gr.Button("Predict")
btn_run.click(
fn=preprocess,
inputs=[inp_dna, inp_lat, inp_lng],
)
btn_defaults = gr.Button("I'm feeling lucky")
btn_defaults.click(fn=set_default_inputs, outputs=[inp_dna, inp_lat, inp_lng])
with gr.Tab("Genus Prediction"):
gr.Interface(
fn=predict_genus,
inputs=[
gr.Dropdown(choices=["cosine", "fine_tuned_model"], value="fine_tuned_model"),
inp_dna,
inp_lat,
inp_lng,
],
outputs=["image"],
)
# with gr.Row():
# gr.Markdown("Make plot or table for Top 5 species")
# with gr.Row():
# genus_out = gr.Dataframe(headers=["DNA Only Pred Genus", "DNA Only Prob", "DNA & Env Pred Genus", "DNA & Env Prob"])
# # btn_run.click(fn=predict_genus, inputs=[inp_dna, inp_lat, inp_lng], outputs=genus_out)
with gr.Tab('DNA Embedding Space Visualizer'):
gr.Markdown("If the highest genus probability is very low for your DNA sequence, we can still examine the DNA embedding of the sequence in relation to known samples for clues.")
with gr.Row() as row:
with gr.Column():
gr.Markdown("Plot of your DNA sequence among other known species clusters.")
# plot = gr.Plot("")
# btn_run.click(fn=tsne_DNA, inputs=[inp_dna, genus_out])
with gr.Column():
gr.Markdown("Plot of the five most common species at your sample coordinate.")
demo.launch()
|