ViMNer / Model /NER /VLSP2021 /Ner_CRF.py
Linhz's picture
Upload 80 files
fd07025 verified
raw
history blame
6.28 kB
from typing import Optional, List, Tuple, Any
from collections import OrderedDict
from transformers import logging, RobertaForTokenClassification
from torch.nn.utils.rnn import pack_padded_sequence, pad_packed_sequence
from torchcrf import CRF
import torch
import torch.nn as nn
import torch.nn.functional as F
logging.set_verbosity_error()
import torch
logging.set_verbosity_error()
class NerOutput(OrderedDict):
loss: Optional[torch.FloatTensor] = torch.FloatTensor([0.0])
tags: Optional[List[int]] = []
def __getitem__(self, k):
if isinstance(k, str):
inner_dict = {k: v for (k, v) in self.items()}
return inner_dict[k]
else:
return self.to_tuple()[k]
def __setattr__(self, name, value):
if name in self.keys() and value is not None:
super().__setitem__(name, value)
super().__setattr__(name, value)
def __setitem__(self, key, value):
super().__setitem__(key, value)
super().__setattr__(key, value)
def to_tuple(self) -> Tuple[Any]:
return tuple(self[k] for k in self.keys())
class PhoBertSoftmax(RobertaForTokenClassification):
def __init__(self, config, **kwargs):
super(PhoBertSoftmax, self).__init__(config=config, **kwargs)
self.num_labels = config.num_labels
def forward(self, input_ids, token_type_ids=None, attention_mask=None, labels=None, valid_ids=None,
label_masks=None):
seq_output = self.roberta(input_ids=input_ids,
token_type_ids=token_type_ids,
attention_mask=attention_mask,
head_mask=None)[0]
seq_output = self.dropout(seq_output)
logits = self.classifier(seq_output)
probs = F.log_softmax(logits, dim=2)
label_masks = label_masks.view(-1) != 0
seq_tags = torch.masked_select(torch.argmax(probs, dim=2).view(-1), label_masks).tolist()
if labels is not None:
loss_func = nn.CrossEntropyLoss()
loss = loss_func(logits.view(-1, self.num_labels), labels.view(-1))
return NerOutput(loss=loss, tags=seq_tags)
else:
return NerOutput(tags=seq_tags)
class PhoBertCrf(RobertaForTokenClassification):
def __init__(self, config):
super(PhoBertCrf, self).__init__(config=config)
self.num_labels = config.num_labels
self.crf = CRF(config.num_labels, batch_first=True)
self.init_weights()
def forward(self, input_ids, token_type_ids=None, attention_mask=None, labels=None, valid_ids=None,
label_masks=None):
seq_outputs = self.roberta(input_ids=input_ids,
token_type_ids=token_type_ids,
attention_mask=attention_mask,
head_mask=None)[0]
batch_size, max_len, feat_dim = seq_outputs.shape
range_vector = torch.arange(0, batch_size, dtype=torch.long, device=seq_outputs.device).unsqueeze(1)
seq_outputs = seq_outputs[range_vector, valid_ids]
seq_outputs = self.dropout(seq_outputs)
logits = self.classifier(seq_outputs)
seq_tags = self.crf.decode(logits, mask=label_masks != 0)
if labels is not None:
log_likelihood = self.crf(logits, labels, mask=label_masks.type(torch.uint8))
return NerOutput(loss=-1.0 * log_likelihood, tags=seq_tags)
else:
return NerOutput(tags=seq_tags)
class PhoBertLstmCrf(RobertaForTokenClassification):
def __init__(self, config):
super(PhoBertLstmCrf, self).__init__(config=config)
self.num_labels = config.num_labels
self.lstm = nn.LSTM(input_size=config.hidden_size,
hidden_size=config.hidden_size // 2,
num_layers=1,
batch_first=True,
bidirectional=True)
self.crf = CRF(config.num_labels, batch_first=True)
@staticmethod
def sort_batch(src_tensor, lengths):
"""
Sort a minibatch by the length of the sequences with the longest sequences first
return the sorted batch targes and sequence lengths.
This way the output can be used by pack_padded_sequences(...)
"""
seq_lengths, perm_idx = lengths.sort(0, descending=True)
seq_tensor = src_tensor[perm_idx]
_, reversed_idx = perm_idx.sort(0, descending=False)
return seq_tensor, seq_lengths, reversed_idx
def forward(self, input_ids, token_type_ids=None, attention_mask=None, labels=None, valid_ids=None,
label_masks=None):
seq_outputs = self.roberta(input_ids=input_ids,
token_type_ids=token_type_ids,
attention_mask=attention_mask,
head_mask=None)[0]
batch_size, max_len, feat_dim = seq_outputs.shape
seq_lens = torch.sum(label_masks, dim=-1)
range_vector = torch.arange(0, batch_size, dtype=torch.long, device=seq_outputs.device).unsqueeze(1)
seq_outputs = seq_outputs[range_vector, valid_ids]
sorted_seq_outputs, sorted_seq_lens, reversed_idx = self.sort_batch(src_tensor=seq_outputs,
lengths=seq_lens)
packed_words = pack_padded_sequence(sorted_seq_outputs, sorted_seq_lens.cpu(), True)
lstm_outs, _ = self.lstm(packed_words)
lstm_outs, _ = pad_packed_sequence(lstm_outs, batch_first=True, total_length=max_len)
seq_outputs = lstm_outs[reversed_idx]
seq_outputs = self.dropout(seq_outputs)
logits = self.classifier(seq_outputs)
seq_tags = self.crf.decode(logits, mask=label_masks != 0)
if labels is not None:
log_likelihood = self.crf(logits, labels, mask=label_masks.type(torch.uint8))
return NerOutput(loss=-1.0 * log_likelihood, tags=seq_tags)
else:
return NerOutput(tags=seq_tags)