File size: 6,275 Bytes
fd07025 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 |
from typing import Optional, List, Tuple, Any
from collections import OrderedDict
from transformers import logging, RobertaForTokenClassification
from torch.nn.utils.rnn import pack_padded_sequence, pad_packed_sequence
from torchcrf import CRF
import torch
import torch.nn as nn
import torch.nn.functional as F
logging.set_verbosity_error()
import torch
logging.set_verbosity_error()
class NerOutput(OrderedDict):
loss: Optional[torch.FloatTensor] = torch.FloatTensor([0.0])
tags: Optional[List[int]] = []
def __getitem__(self, k):
if isinstance(k, str):
inner_dict = {k: v for (k, v) in self.items()}
return inner_dict[k]
else:
return self.to_tuple()[k]
def __setattr__(self, name, value):
if name in self.keys() and value is not None:
super().__setitem__(name, value)
super().__setattr__(name, value)
def __setitem__(self, key, value):
super().__setitem__(key, value)
super().__setattr__(key, value)
def to_tuple(self) -> Tuple[Any]:
return tuple(self[k] for k in self.keys())
class PhoBertSoftmax(RobertaForTokenClassification):
def __init__(self, config, **kwargs):
super(PhoBertSoftmax, self).__init__(config=config, **kwargs)
self.num_labels = config.num_labels
def forward(self, input_ids, token_type_ids=None, attention_mask=None, labels=None, valid_ids=None,
label_masks=None):
seq_output = self.roberta(input_ids=input_ids,
token_type_ids=token_type_ids,
attention_mask=attention_mask,
head_mask=None)[0]
seq_output = self.dropout(seq_output)
logits = self.classifier(seq_output)
probs = F.log_softmax(logits, dim=2)
label_masks = label_masks.view(-1) != 0
seq_tags = torch.masked_select(torch.argmax(probs, dim=2).view(-1), label_masks).tolist()
if labels is not None:
loss_func = nn.CrossEntropyLoss()
loss = loss_func(logits.view(-1, self.num_labels), labels.view(-1))
return NerOutput(loss=loss, tags=seq_tags)
else:
return NerOutput(tags=seq_tags)
class PhoBertCrf(RobertaForTokenClassification):
def __init__(self, config):
super(PhoBertCrf, self).__init__(config=config)
self.num_labels = config.num_labels
self.crf = CRF(config.num_labels, batch_first=True)
self.init_weights()
def forward(self, input_ids, token_type_ids=None, attention_mask=None, labels=None, valid_ids=None,
label_masks=None):
seq_outputs = self.roberta(input_ids=input_ids,
token_type_ids=token_type_ids,
attention_mask=attention_mask,
head_mask=None)[0]
batch_size, max_len, feat_dim = seq_outputs.shape
range_vector = torch.arange(0, batch_size, dtype=torch.long, device=seq_outputs.device).unsqueeze(1)
seq_outputs = seq_outputs[range_vector, valid_ids]
seq_outputs = self.dropout(seq_outputs)
logits = self.classifier(seq_outputs)
seq_tags = self.crf.decode(logits, mask=label_masks != 0)
if labels is not None:
log_likelihood = self.crf(logits, labels, mask=label_masks.type(torch.uint8))
return NerOutput(loss=-1.0 * log_likelihood, tags=seq_tags)
else:
return NerOutput(tags=seq_tags)
class PhoBertLstmCrf(RobertaForTokenClassification):
def __init__(self, config):
super(PhoBertLstmCrf, self).__init__(config=config)
self.num_labels = config.num_labels
self.lstm = nn.LSTM(input_size=config.hidden_size,
hidden_size=config.hidden_size // 2,
num_layers=1,
batch_first=True,
bidirectional=True)
self.crf = CRF(config.num_labels, batch_first=True)
@staticmethod
def sort_batch(src_tensor, lengths):
"""
Sort a minibatch by the length of the sequences with the longest sequences first
return the sorted batch targes and sequence lengths.
This way the output can be used by pack_padded_sequences(...)
"""
seq_lengths, perm_idx = lengths.sort(0, descending=True)
seq_tensor = src_tensor[perm_idx]
_, reversed_idx = perm_idx.sort(0, descending=False)
return seq_tensor, seq_lengths, reversed_idx
def forward(self, input_ids, token_type_ids=None, attention_mask=None, labels=None, valid_ids=None,
label_masks=None):
seq_outputs = self.roberta(input_ids=input_ids,
token_type_ids=token_type_ids,
attention_mask=attention_mask,
head_mask=None)[0]
batch_size, max_len, feat_dim = seq_outputs.shape
seq_lens = torch.sum(label_masks, dim=-1)
range_vector = torch.arange(0, batch_size, dtype=torch.long, device=seq_outputs.device).unsqueeze(1)
seq_outputs = seq_outputs[range_vector, valid_ids]
sorted_seq_outputs, sorted_seq_lens, reversed_idx = self.sort_batch(src_tensor=seq_outputs,
lengths=seq_lens)
packed_words = pack_padded_sequence(sorted_seq_outputs, sorted_seq_lens.cpu(), True)
lstm_outs, _ = self.lstm(packed_words)
lstm_outs, _ = pad_packed_sequence(lstm_outs, batch_first=True, total_length=max_len)
seq_outputs = lstm_outs[reversed_idx]
seq_outputs = self.dropout(seq_outputs)
logits = self.classifier(seq_outputs)
seq_tags = self.crf.decode(logits, mask=label_masks != 0)
if labels is not None:
log_likelihood = self.crf(logits, labels, mask=label_masks.type(torch.uint8))
return NerOutput(loss=-1.0 * log_likelihood, tags=seq_tags)
else:
return NerOutput(tags=seq_tags) |