|
import os
|
|
import sys
|
|
|
|
os.environ["CUDA_VISIBLE_DEVICES"] = "0"
|
|
import argparse
|
|
|
|
import logging
|
|
import random
|
|
import numpy as np
|
|
import torch
|
|
import torch.nn.functional as F
|
|
from transformers import AutoTokenizer, BertConfig
|
|
from Model.MultimodelNER.UMT import UMT
|
|
from Model.MultimodelNER import resnet as resnet
|
|
from Model.MultimodelNER.resnet_utils import myResnet
|
|
from Model.MultimodelNER.VLSP2016.dataset_roberta import convert_mm_examples_to_features, MNERProcessor_2016
|
|
from torch.utils.data import (DataLoader, RandomSampler, SequentialSampler,
|
|
TensorDataset)
|
|
from pytorch_pretrained_bert.optimization import BertAdam, warmup_linear
|
|
from Model.MultimodelNER.ner_evaluate import evaluate_each_class,evaluate
|
|
from seqeval.metrics import classification_report
|
|
from tqdm import tqdm, trange
|
|
import json
|
|
from Model.MultimodelNER.predict import convert_mm_examples_to_features_predict, get_test_examples_predict
|
|
from Model.MultimodelNER.Ner_processing import *
|
|
CONFIG_NAME = 'bert_config.json'
|
|
WEIGHTS_NAME = 'pytorch_model.bin'
|
|
|
|
logging.basicConfig(format='%(asctime)s - %(levelname)s - %(name)s - %(message)s',
|
|
datefmt='%m/%d/%Y %H:%M:%S',
|
|
level=logging.INFO)
|
|
logger = logging.getLogger(__name__)
|
|
parser = argparse.ArgumentParser()
|
|
|
|
parser.add_argument("--negative_rate",
|
|
default=16,
|
|
type=int,
|
|
help="the negative samples rate")
|
|
|
|
parser.add_argument('--lamb',
|
|
default=0.62,
|
|
type=float)
|
|
|
|
parser.add_argument('--temp',
|
|
type=float,
|
|
default=0.179,
|
|
help="parameter for CL training")
|
|
|
|
parser.add_argument('--temp_lamb',
|
|
type=float,
|
|
default=0.7,
|
|
help="parameter for CL training")
|
|
|
|
parser.add_argument("--data_dir",
|
|
default='./data/twitter2017',
|
|
type=str,
|
|
|
|
help="The input data dir. Should contain the .tsv files (or other data files) for the task.")
|
|
parser.add_argument("--bert_model", default='vinai/phobert-base-v2', type=str)
|
|
parser.add_argument("--task_name",
|
|
default='sonba',
|
|
type=str,
|
|
|
|
help="The name of the task to train.")
|
|
parser.add_argument("--output_dir",
|
|
default='E:/demo_datn/pythonProject1/Model/MultimodelNER/VLSP2016/best_model/',
|
|
type=str,
|
|
help="The output directory where the model predictions and checkpoints will be written.")
|
|
|
|
|
|
parser.add_argument("--cache_dir",
|
|
default="",
|
|
type=str,
|
|
help="Where do you want to store the pre-trained models downloaded from s3")
|
|
|
|
parser.add_argument("--max_seq_length",
|
|
default=128,
|
|
type=int,
|
|
help="The maximum total input sequence length after WordPiece tokenization. \n"
|
|
"Sequences longer than this will be truncated, and sequences shorter \n"
|
|
"than this will be padded.")
|
|
|
|
parser.add_argument("--do_train",
|
|
action='store_true',
|
|
help="Whether to run training.")
|
|
|
|
parser.add_argument("--do_eval",
|
|
action='store_true',
|
|
help="Whether to run eval on the dev set.")
|
|
|
|
parser.add_argument("--do_lower_case",
|
|
action='store_true',
|
|
help="Set this flag if you are using an uncased model.")
|
|
|
|
parser.add_argument("--train_batch_size",
|
|
default=64,
|
|
type=int,
|
|
help="Total batch size for training.")
|
|
|
|
parser.add_argument("--eval_batch_size",
|
|
default=16,
|
|
type=int,
|
|
help="Total batch size for eval.")
|
|
|
|
parser.add_argument("--learning_rate",
|
|
default=5e-5,
|
|
type=float,
|
|
help="The initial learning rate for Adam.")
|
|
|
|
parser.add_argument("--num_train_epochs",
|
|
default=12.0,
|
|
type=float,
|
|
help="Total number of training epochs to perform.")
|
|
|
|
parser.add_argument("--warmup_proportion",
|
|
default=0.1,
|
|
type=float,
|
|
help="Proportion of training to perform linear learning rate warmup for. "
|
|
"E.g., 0.1 = 10%% of training.")
|
|
|
|
parser.add_argument("--no_cuda",
|
|
action='store_true',
|
|
help="Whether not to use CUDA when available")
|
|
|
|
parser.add_argument("--local_rank",
|
|
type=int,
|
|
default=-1,
|
|
help="local_rank for distributed training on gpus")
|
|
|
|
parser.add_argument('--seed',
|
|
type=int,
|
|
default=37,
|
|
help="random seed for initialization")
|
|
|
|
parser.add_argument('--gradient_accumulation_steps',
|
|
type=int,
|
|
default=1,
|
|
help="Number of updates steps to accumulate before performing a backward/update pass.")
|
|
|
|
parser.add_argument('--fp16',
|
|
action='store_true',
|
|
help="Whether to use 16-bit float precision instead of 32-bit")
|
|
|
|
parser.add_argument('--loss_scale',
|
|
type=float, default=0,
|
|
help="Loss scaling to improve fp16 numeric stability. Only used when fp16 set to True.\n"
|
|
"0 (default value): dynamic loss scaling.\n"
|
|
"Positive power of 2: static loss scaling value.\n")
|
|
|
|
parser.add_argument('--mm_model', default='MTCCMBert', help='model name')
|
|
parser.add_argument('--layer_num1', type=int, default=1, help='number of txt2img layer')
|
|
parser.add_argument('--layer_num2', type=int, default=1, help='number of img2txt layer')
|
|
parser.add_argument('--layer_num3', type=int, default=1, help='number of txt2txt layer')
|
|
parser.add_argument('--fine_tune_cnn', action='store_true', help='fine tune pre-trained CNN if True')
|
|
parser.add_argument('--resnet_root', default='E:/demo_datn/pythonProject1/Model/Resnet/', help='path the pre-trained cnn models')
|
|
parser.add_argument('--crop_size', type=int, default=224, help='crop size of image')
|
|
parser.add_argument('--path_image', default='E:/demo_datn/pythonProject1/Model/MultimodelNER/VLSP2016/Image', help='path to images')
|
|
|
|
parser.add_argument('--server_ip', type=str, default='', help="Can be used for distant debugging.")
|
|
parser.add_argument('--server_port', type=str, default='', help="Can be used for distant debugging.")
|
|
args = parser.parse_args()
|
|
|
|
|
|
|
|
processors = {
|
|
"twitter2015": MNERProcessor_2016,
|
|
"twitter2017": MNERProcessor_2016,
|
|
"sonba": MNERProcessor_2016
|
|
}
|
|
|
|
|
|
|
|
random.seed(args.seed)
|
|
np.random.seed(args.seed)
|
|
torch.manual_seed(args.seed)
|
|
|
|
|
|
task_name = args.task_name.lower()
|
|
|
|
|
|
|
|
processor = processors[task_name]()
|
|
label_list = processor.get_labels()
|
|
auxlabel_list = processor.get_auxlabels()
|
|
num_labels = len(label_list) + 1
|
|
auxnum_labels = len(auxlabel_list) + 1
|
|
|
|
start_label_id = processor.get_start_label_id()
|
|
stop_label_id = processor.get_stop_label_id()
|
|
|
|
|
|
trans_matrix = np.zeros((auxnum_labels, num_labels), dtype=float)
|
|
trans_matrix[0, 0] = 1
|
|
trans_matrix[1, 1] = 1
|
|
trans_matrix[2, 2] = 0.25
|
|
trans_matrix[2, 4] = 0.25
|
|
trans_matrix[2, 6] = 0.25
|
|
trans_matrix[2, 8] = 0.25
|
|
trans_matrix[3, 3] = 0.25
|
|
trans_matrix[3, 5] = 0.25
|
|
trans_matrix[3, 7] = 0.25
|
|
trans_matrix[3, 9] = 0.25
|
|
trans_matrix[4, 10] = 1
|
|
trans_matrix[5, 11] = 1
|
|
trans_matrix[6, 12] = 1
|
|
'''
|
|
trans_matrix = np.zeros((num_labels, auxnum_labels), dtype=float)
|
|
trans_matrix[0,0]=1 # pad to pad
|
|
trans_matrix[1,1]=1
|
|
trans_matrix[2,2]=1
|
|
trans_matrix[4,2]=1
|
|
trans_matrix[6,2]=1
|
|
trans_matrix[8,2]=1
|
|
trans_matrix[3,3]=1
|
|
trans_matrix[5,3]=1
|
|
trans_matrix[7,3]=1
|
|
trans_matrix[9,3]=1
|
|
trans_matrix[10,4]=1
|
|
trans_matrix[11,5]=1
|
|
trans_matrix[12,6]=1
|
|
'''
|
|
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
|
|
|
tokenizer = AutoTokenizer.from_pretrained(args.bert_model, do_lower_case=args.do_lower_case)
|
|
|
|
|
|
|
|
net = getattr(resnet, 'resnet152')()
|
|
net.load_state_dict(torch.load(os.path.join(args.resnet_root, 'resnet152.pth')))
|
|
encoder = myResnet(net, args.fine_tune_cnn, device)
|
|
|
|
|
|
output_model_file = os.path.join(args.output_dir, WEIGHTS_NAME)
|
|
|
|
output_encoder_file = os.path.join(args.output_dir, "pytorch_encoder.bin")
|
|
|
|
temp = args.temp
|
|
temp_lamb = args.temp_lamb
|
|
lamb = args.lamb
|
|
negative_rate = args.negative_rate
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def load_model(output_model_file, output_encoder_file,encoder,num_labels,auxnum_labels):
|
|
model = UMT.from_pretrained(args.bert_model,
|
|
cache_dir=args.cache_dir, layer_num1=args.layer_num1,
|
|
layer_num2=args.layer_num2,
|
|
layer_num3=args.layer_num3,
|
|
num_labels_=num_labels, auxnum_labels=auxnum_labels)
|
|
model.load_state_dict(torch.load(output_model_file, map_location=torch.device('cpu')))
|
|
model.to(device)
|
|
encoder_state_dict = torch.load(output_encoder_file, map_location=torch.device('cpu'))
|
|
encoder.load_state_dict(encoder_state_dict)
|
|
encoder.to(device)
|
|
return model, encoder
|
|
|
|
model_umt,encoder_umt=load_model(output_model_file, output_encoder_file,encoder,num_labels,auxnum_labels)
|
|
|
|
|
|
|
|
|
|
path_image='E:\demo_datn\pythonProject1\Model\MultimodelNER\VLSP2016\Image'
|
|
trans_matrix = np.zeros((auxnum_labels,num_labels), dtype=float)
|
|
trans_matrix[0,0]=1
|
|
trans_matrix[1,1]=1
|
|
trans_matrix[2,2]=0.25
|
|
trans_matrix[2,4]=0.25
|
|
trans_matrix[2,6]=0.25
|
|
trans_matrix[2,8]=0.25
|
|
trans_matrix[3,3]=0.25
|
|
trans_matrix[3,5]=0.25
|
|
trans_matrix[3,7]=0.25
|
|
trans_matrix[3,9]=0.25
|
|
trans_matrix[4,10]=1
|
|
trans_matrix[5,11]=1
|
|
trans_matrix[6,12]=1
|
|
path_image='E:\demo_datn\pythonProject1\Model\MultimodelNER\VLSP2016\Image'
|
|
|
|
def predict(model_umt, encoder_umt, eval_examples, tokenizer, device,path_image,trans_matrix):
|
|
|
|
features = convert_mm_examples_to_features_predict(eval_examples, 256, tokenizer, 224,path_image)
|
|
|
|
input_ids = torch.tensor([f.input_ids for f in features], dtype=torch.long)
|
|
input_mask = torch.tensor([f.input_mask for f in features], dtype=torch.long)
|
|
added_input_mask = torch.tensor([f.added_input_mask for f in features], dtype=torch.long)
|
|
segment_ids = torch.tensor([f.segment_ids for f in features], dtype=torch.long)
|
|
img_feats = torch.stack([f.img_feat for f in features])
|
|
print(img_feats)
|
|
eval_data = TensorDataset(input_ids, input_mask, added_input_mask, segment_ids, img_feats)
|
|
eval_sampler = SequentialSampler(eval_data)
|
|
eval_dataloader = DataLoader(eval_data, sampler=eval_sampler, batch_size=16)
|
|
|
|
model_umt.eval()
|
|
encoder_umt.eval()
|
|
|
|
y_pred = []
|
|
label_map = {i: label for i, label in enumerate(label_list, 1)}
|
|
label_map[0] = "<pad>"
|
|
|
|
for input_ids, input_mask, added_input_mask, segment_ids, img_feats in tqdm(eval_dataloader, desc="Evaluating"):
|
|
input_ids = input_ids.to(device)
|
|
input_mask = input_mask.to(device)
|
|
added_input_mask = added_input_mask.to(device)
|
|
segment_ids = segment_ids.to(device)
|
|
img_feats = img_feats.to(device)
|
|
|
|
with torch.no_grad():
|
|
imgs_f, img_mean, img_att = encoder_umt(img_feats)
|
|
predicted_label_seq_ids = model_umt(input_ids, segment_ids, input_mask, added_input_mask, img_att,
|
|
trans_matrix)
|
|
|
|
logits = predicted_label_seq_ids
|
|
input_mask = input_mask.to('cpu').numpy()
|
|
|
|
for i, mask in enumerate(input_mask):
|
|
temp_1 = []
|
|
for j, m in enumerate(mask):
|
|
if j == 0:
|
|
continue
|
|
if m:
|
|
if label_map[logits[i][j]] not in ["<pad>", "<s>", "</s>", "X"]:
|
|
temp_1.append(label_map[logits[i][j]])
|
|
else:
|
|
break
|
|
y_pred.append(temp_1)
|
|
|
|
a = eval_examples[0].text_a.split(" ")
|
|
|
|
return y_pred, a
|
|
|
|
eval_examples = get_test_examples_predict('E:/demo_datn/pythonProject1/Model/MultimodelNER/VLSP2016/Filetxt/')
|
|
y_pred, a = predict(model_umt, encoder_umt, eval_examples, tokenizer, device,path_image,trans_matrix)
|
|
print(y_pred)
|
|
formatted_output = format_predictions(a, y_pred[0])
|
|
print(formatted_output)
|
|
final= process_predictions(formatted_output)
|
|
final2= combine_entities(final)
|
|
final3= remove_B_prefix(final2)
|
|
final4=combine_i_tags(final3)
|
|
|
|
print(final4)
|
|
|
|
|