File size: 14,740 Bytes
fd07025 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 |
import os
import sys
os.environ["CUDA_VISIBLE_DEVICES"] = "0"
import argparse
import logging
import random
import numpy as np
import torch
import torch.nn.functional as F
from transformers import AutoTokenizer, BertConfig
from Model.MultimodelNER.UMT import UMT
from Model.MultimodelNER import resnet as resnet
from Model.MultimodelNER.resnet_utils import myResnet
from Model.MultimodelNER.VLSP2016.dataset_roberta import convert_mm_examples_to_features, MNERProcessor_2016
from torch.utils.data import (DataLoader, RandomSampler, SequentialSampler,
TensorDataset)
from pytorch_pretrained_bert.optimization import BertAdam, warmup_linear
from Model.MultimodelNER.ner_evaluate import evaluate_each_class,evaluate
from seqeval.metrics import classification_report
from tqdm import tqdm, trange
import json
from Model.MultimodelNER.predict import convert_mm_examples_to_features_predict, get_test_examples_predict
from Model.MultimodelNER.Ner_processing import *
CONFIG_NAME = 'bert_config.json'
WEIGHTS_NAME = 'pytorch_model.bin'
logging.basicConfig(format='%(asctime)s - %(levelname)s - %(name)s - %(message)s',
datefmt='%m/%d/%Y %H:%M:%S',
level=logging.INFO)
logger = logging.getLogger(__name__)
parser = argparse.ArgumentParser()
## Required parameters
parser.add_argument("--negative_rate",
default=16,
type=int,
help="the negative samples rate")
parser.add_argument('--lamb',
default=0.62,
type=float)
parser.add_argument('--temp',
type=float,
default=0.179,
help="parameter for CL training")
parser.add_argument('--temp_lamb',
type=float,
default=0.7,
help="parameter for CL training")
parser.add_argument("--data_dir",
default='./data/twitter2017',
type=str,
help="The input data dir. Should contain the .tsv files (or other data files) for the task.")
parser.add_argument("--bert_model", default='vinai/phobert-base-v2', type=str)
parser.add_argument("--task_name",
default='sonba',
type=str,
help="The name of the task to train.")
parser.add_argument("--output_dir",
default='E:/demo_datn/pythonProject1/Model/MultimodelNER/VLSP2016/best_model/',
type=str,
help="The output directory where the model predictions and checkpoints will be written.")
## Other parameters
parser.add_argument("--cache_dir",
default="",
type=str,
help="Where do you want to store the pre-trained models downloaded from s3")
parser.add_argument("--max_seq_length",
default=128,
type=int,
help="The maximum total input sequence length after WordPiece tokenization. \n"
"Sequences longer than this will be truncated, and sequences shorter \n"
"than this will be padded.")
parser.add_argument("--do_train",
action='store_true',
help="Whether to run training.")
parser.add_argument("--do_eval",
action='store_true',
help="Whether to run eval on the dev set.")
parser.add_argument("--do_lower_case",
action='store_true',
help="Set this flag if you are using an uncased model.")
parser.add_argument("--train_batch_size",
default=64,
type=int,
help="Total batch size for training.")
parser.add_argument("--eval_batch_size",
default=16,
type=int,
help="Total batch size for eval.")
parser.add_argument("--learning_rate",
default=5e-5,
type=float,
help="The initial learning rate for Adam.")
parser.add_argument("--num_train_epochs",
default=12.0,
type=float,
help="Total number of training epochs to perform.")
parser.add_argument("--warmup_proportion",
default=0.1,
type=float,
help="Proportion of training to perform linear learning rate warmup for. "
"E.g., 0.1 = 10%% of training.")
parser.add_argument("--no_cuda",
action='store_true',
help="Whether not to use CUDA when available")
parser.add_argument("--local_rank",
type=int,
default=-1,
help="local_rank for distributed training on gpus")
parser.add_argument('--seed',
type=int,
default=37,
help="random seed for initialization")
parser.add_argument('--gradient_accumulation_steps',
type=int,
default=1,
help="Number of updates steps to accumulate before performing a backward/update pass.")
parser.add_argument('--fp16',
action='store_true',
help="Whether to use 16-bit float precision instead of 32-bit")
parser.add_argument('--loss_scale',
type=float, default=0,
help="Loss scaling to improve fp16 numeric stability. Only used when fp16 set to True.\n"
"0 (default value): dynamic loss scaling.\n"
"Positive power of 2: static loss scaling value.\n")
parser.add_argument('--mm_model', default='MTCCMBert', help='model name') # 'MTCCMBert', 'NMMTCCMBert'
parser.add_argument('--layer_num1', type=int, default=1, help='number of txt2img layer')
parser.add_argument('--layer_num2', type=int, default=1, help='number of img2txt layer')
parser.add_argument('--layer_num3', type=int, default=1, help='number of txt2txt layer')
parser.add_argument('--fine_tune_cnn', action='store_true', help='fine tune pre-trained CNN if True')
parser.add_argument('--resnet_root', default='E:/demo_datn/pythonProject1/Model/Resnet/', help='path the pre-trained cnn models')
parser.add_argument('--crop_size', type=int, default=224, help='crop size of image')
parser.add_argument('--path_image', default='E:/demo_datn/pythonProject1/Model/MultimodelNER/VLSP2016/Image', help='path to images')
# parser.add_argument('--mm_model', default='TomBert', help='model name') #
parser.add_argument('--server_ip', type=str, default='', help="Can be used for distant debugging.")
parser.add_argument('--server_port', type=str, default='', help="Can be used for distant debugging.")
args = parser.parse_args()
processors = {
"twitter2015": MNERProcessor_2016,
"twitter2017": MNERProcessor_2016,
"sonba": MNERProcessor_2016
}
random.seed(args.seed)
np.random.seed(args.seed)
torch.manual_seed(args.seed)
task_name = args.task_name.lower()
processor = processors[task_name]()
label_list = processor.get_labels()
auxlabel_list = processor.get_auxlabels()
num_labels = len(label_list) + 1 # label 0 corresponds to padding, label in label_list starts from 1
auxnum_labels = len(auxlabel_list) + 1 # label 0 corresponds to padding, label in label_list starts from 1
start_label_id = processor.get_start_label_id()
stop_label_id = processor.get_stop_label_id()
# ''' initialization of our conversion matrix, in our implementation, it is a 7*12 matrix initialized as follows:
trans_matrix = np.zeros((auxnum_labels, num_labels), dtype=float)
trans_matrix[0, 0] = 1 # pad to pad
trans_matrix[1, 1] = 1 # O to O
trans_matrix[2, 2] = 0.25 # B to B-MISC
trans_matrix[2, 4] = 0.25 # B to B-PER
trans_matrix[2, 6] = 0.25 # B to B-ORG
trans_matrix[2, 8] = 0.25 # B to B-LOC
trans_matrix[3, 3] = 0.25 # I to I-MISC
trans_matrix[3, 5] = 0.25 # I to I-PER
trans_matrix[3, 7] = 0.25 # I to I-ORG
trans_matrix[3, 9] = 0.25 # I to I-LOC
trans_matrix[4, 10] = 1 # X to X
trans_matrix[5, 11] = 1 # [CLS] to [CLS]
trans_matrix[6, 12] = 1 # [SEP] to [SEP]
'''
trans_matrix = np.zeros((num_labels, auxnum_labels), dtype=float)
trans_matrix[0,0]=1 # pad to pad
trans_matrix[1,1]=1
trans_matrix[2,2]=1
trans_matrix[4,2]=1
trans_matrix[6,2]=1
trans_matrix[8,2]=1
trans_matrix[3,3]=1
trans_matrix[5,3]=1
trans_matrix[7,3]=1
trans_matrix[9,3]=1
trans_matrix[10,4]=1
trans_matrix[11,5]=1
trans_matrix[12,6]=1
'''
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
tokenizer = AutoTokenizer.from_pretrained(args.bert_model, do_lower_case=args.do_lower_case)
net = getattr(resnet, 'resnet152')()
net.load_state_dict(torch.load(os.path.join(args.resnet_root, 'resnet152.pth')))
encoder = myResnet(net, args.fine_tune_cnn, device)
output_model_file = os.path.join(args.output_dir, WEIGHTS_NAME)
# output_config_file = os.path.join(args.output_dir, CONFIG_NAME)
output_encoder_file = os.path.join(args.output_dir, "pytorch_encoder.bin")
temp = args.temp
temp_lamb = args.temp_lamb
lamb = args.lamb
negative_rate = args.negative_rate
# # loadmodel
# model = UMT.from_pretrained(args.bert_model,
# cache_dir=args.cache_dir, layer_num1=args.layer_num1,
# layer_num2=args.layer_num2,
# layer_num3=args.layer_num3,
# num_labels_=num_labels, auxnum_labels=auxnum_labels)
# model.load_state_dict(torch.load(output_model_file,map_location=torch.device('cpu')))
# model.to(device)
# encoder_state_dict = torch.load(output_encoder_file,map_location=torch.device('cpu'))
# encoder.load_state_dict(encoder_state_dict)
# encoder.to(device)
# print(model)
def load_model(output_model_file, output_encoder_file,encoder,num_labels,auxnum_labels):
model = UMT.from_pretrained(args.bert_model,
cache_dir=args.cache_dir, layer_num1=args.layer_num1,
layer_num2=args.layer_num2,
layer_num3=args.layer_num3,
num_labels_=num_labels, auxnum_labels=auxnum_labels)
model.load_state_dict(torch.load(output_model_file, map_location=torch.device('cpu')))
model.to(device)
encoder_state_dict = torch.load(output_encoder_file, map_location=torch.device('cpu'))
encoder.load_state_dict(encoder_state_dict)
encoder.to(device)
return model, encoder
model_umt,encoder_umt=load_model(output_model_file, output_encoder_file,encoder,num_labels,auxnum_labels)
#
# # sentence = 'Thương biết_mấy những Thuận, những Liên, những Luận, Xuân, Nghĩa mỗi người một hoàn_cảnh nhưng đều rất giống nhau: rất ham học, rất cố_gắng để đạt mức hiểu biết cao nhất.'
# # image_path = '/kaggle/working/data/014715.jpg'
# # # crop_size = 224'
path_image='E:\demo_datn\pythonProject1\Model\MultimodelNER\VLSP2016\Image'
trans_matrix = np.zeros((auxnum_labels,num_labels), dtype=float)
trans_matrix[0,0]=1 # pad to pad
trans_matrix[1,1]=1 # O to O
trans_matrix[2,2]=0.25 # B to B-MISC
trans_matrix[2,4]=0.25 # B to B-PER
trans_matrix[2,6]=0.25 # B to B-ORG
trans_matrix[2,8]=0.25 # B to B-LOC
trans_matrix[3,3]=0.25 # I to I-MISC
trans_matrix[3,5]=0.25 # I to I-PER
trans_matrix[3,7]=0.25 # I to I-ORG
trans_matrix[3,9]=0.25 # I to I-LOC
trans_matrix[4,10]=1 # X to X
trans_matrix[5,11]=1 # [CLS] to [CLS]
trans_matrix[6,12]=1 # [SE
path_image='E:\demo_datn\pythonProject1\Model\MultimodelNER\VLSP2016\Image'
def predict(model_umt, encoder_umt, eval_examples, tokenizer, device,path_image,trans_matrix):
features = convert_mm_examples_to_features_predict(eval_examples, 256, tokenizer, 224,path_image)
input_ids = torch.tensor([f.input_ids for f in features], dtype=torch.long)
input_mask = torch.tensor([f.input_mask for f in features], dtype=torch.long)
added_input_mask = torch.tensor([f.added_input_mask for f in features], dtype=torch.long)
segment_ids = torch.tensor([f.segment_ids for f in features], dtype=torch.long)
img_feats = torch.stack([f.img_feat for f in features])
print(img_feats)
eval_data = TensorDataset(input_ids, input_mask, added_input_mask, segment_ids, img_feats)
eval_sampler = SequentialSampler(eval_data)
eval_dataloader = DataLoader(eval_data, sampler=eval_sampler, batch_size=16)
model_umt.eval()
encoder_umt.eval()
y_pred = []
label_map = {i: label for i, label in enumerate(label_list, 1)}
label_map[0] = "<pad>"
for input_ids, input_mask, added_input_mask, segment_ids, img_feats in tqdm(eval_dataloader, desc="Evaluating"):
input_ids = input_ids.to(device)
input_mask = input_mask.to(device)
added_input_mask = added_input_mask.to(device)
segment_ids = segment_ids.to(device)
img_feats = img_feats.to(device)
with torch.no_grad():
imgs_f, img_mean, img_att = encoder_umt(img_feats)
predicted_label_seq_ids = model_umt(input_ids, segment_ids, input_mask, added_input_mask, img_att,
trans_matrix)
logits = predicted_label_seq_ids
input_mask = input_mask.to('cpu').numpy()
for i, mask in enumerate(input_mask):
temp_1 = []
for j, m in enumerate(mask):
if j == 0:
continue
if m:
if label_map[logits[i][j]] not in ["<pad>", "<s>", "</s>", "X"]:
temp_1.append(label_map[logits[i][j]])
else:
break
y_pred.append(temp_1)
a = eval_examples[0].text_a.split(" ")
return y_pred, a
eval_examples = get_test_examples_predict('E:/demo_datn/pythonProject1/Model/MultimodelNER/VLSP2016/Filetxt/')
y_pred, a = predict(model_umt, encoder_umt, eval_examples, tokenizer, device,path_image,trans_matrix)
print(y_pred)
formatted_output = format_predictions(a, y_pred[0])
print(formatted_output)
final= process_predictions(formatted_output)
final2= combine_entities(final)
final3= remove_B_prefix(final2)
final4=combine_i_tags(final3)
print(final4)
|