File size: 14,221 Bytes
4f1a2c9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
import os
import sys

os.environ["CUDA_VISIBLE_DEVICES"] = "0"
import argparse

import logging
import random
import numpy as np
import torch
import torch.nn.functional as F
from transformers import AutoTokenizer, BertConfig
from Model.MultimodelNER.UMT import UMT
from Model.MultimodelNER import resnet as resnet
from Model.MultimodelNER.resnet_utils import myResnet
from Model.MultimodelNER.VLSP2021.dataset_roberta import convert_mm_examples_to_features, MNERProcessor_2021
from torch.utils.data import (DataLoader, RandomSampler, SequentialSampler,
                              TensorDataset)
from pytorch_pretrained_bert.optimization import BertAdam, warmup_linear
from Model.MultimodelNER.ner_evaluate import evaluate_each_class,evaluate
from seqeval.metrics import classification_report
from tqdm import tqdm, trange
import json
from Model.MultimodelNER.predict import convert_mm_examples_to_features_predict, get_test_examples_predict
from Model.MultimodelNER.Ner_processing import *
CONFIG_NAME = 'bert_config.json'
WEIGHTS_NAME = 'pytorch_model.bin'

logging.basicConfig(format='%(asctime)s - %(levelname)s - %(name)s -   %(message)s',
                    datefmt='%m/%d/%Y %H:%M:%S',
                    level=logging.INFO)
logger = logging.getLogger(__name__)
parser = argparse.ArgumentParser()
## Required parameters
parser.add_argument("--negative_rate",
                    default=16,
                    type=int,
                    help="the negative samples rate")

parser.add_argument('--lamb',
                    default=0.62,
                    type=float)

parser.add_argument('--temp',
                    type=float,
                    default=0.179,
                    help="parameter for CL training")

parser.add_argument('--temp_lamb',
                    type=float,
                    default=0.7,
                    help="parameter for CL training")

parser.add_argument("--data_dir",
                    default='./data/twitter2017',
                    type=str,

                    help="The input data dir. Should contain the .tsv files (or other data files) for the task.")
parser.add_argument("--bert_model", default='vinai/phobert-base-v2', type=str)
parser.add_argument("--task_name",
                    default='sonba',
                    type=str,

                    help="The name of the task to train.")
parser.add_argument("--output_dir",
                    default='Model/MultimodelNER/VLSP2021/best_model/',
                    type=str,
                    help="The output directory where the model predictions and checkpoints will be written.")

## Other parameters
parser.add_argument("--cache_dir",
                    default="",
                    type=str,
                    help="Where do you want to store the pre-trained models downloaded from s3")

parser.add_argument("--max_seq_length",
                    default=128,
                    type=int,
                    help="The maximum total input sequence length after WordPiece tokenization. \n"
                         "Sequences longer than this will be truncated, and sequences shorter \n"
                         "than this will be padded.")

parser.add_argument("--do_train",
                    action='store_true',
                    help="Whether to run training.")

parser.add_argument("--do_eval",
                    action='store_true',
                    help="Whether to run eval on the dev set.")

parser.add_argument("--do_lower_case",
                    action='store_true',
                    help="Set this flag if you are using an uncased model.")

parser.add_argument("--train_batch_size",
                    default=64,
                    type=int,
                    help="Total batch size for training.")

parser.add_argument("--eval_batch_size",
                    default=16,
                    type=int,
                    help="Total batch size for eval.")

parser.add_argument("--learning_rate",
                    default=5e-5,
                    type=float,
                    help="The initial learning rate for Adam.")

parser.add_argument("--num_train_epochs",
                    default=12.0,
                    type=float,
                    help="Total number of training epochs to perform.")

parser.add_argument("--warmup_proportion",
                    default=0.1,
                    type=float,
                    help="Proportion of training to perform linear learning rate warmup for. "
                         "E.g., 0.1 = 10%% of training.")

parser.add_argument("--no_cuda",
                    action='store_true',
                    help="Whether not to use CUDA when available")

parser.add_argument("--local_rank",
                    type=int,
                    default=-1,
                    help="local_rank for distributed training on gpus")

parser.add_argument('--seed',
                    type=int,
                    default=37,
                    help="random seed for initialization")

parser.add_argument('--gradient_accumulation_steps',
                    type=int,
                    default=1,
                    help="Number of updates steps to accumulate before performing a backward/update pass.")

parser.add_argument('--fp16',
                    action='store_true',
                    help="Whether to use 16-bit float precision instead of 32-bit")

parser.add_argument('--loss_scale',
                    type=float, default=0,
                    help="Loss scaling to improve fp16 numeric stability. Only used when fp16 set to True.\n"
                         "0 (default value): dynamic loss scaling.\n"
                         "Positive power of 2: static loss scaling value.\n")

parser.add_argument('--mm_model', default='MTCCMBert', help='model name')  # 'MTCCMBert', 'NMMTCCMBert'
parser.add_argument('--layer_num1', type=int, default=1, help='number of txt2img layer')
parser.add_argument('--layer_num2', type=int, default=1, help='number of img2txt layer')
parser.add_argument('--layer_num3', type=int, default=1, help='number of txt2txt layer')
parser.add_argument('--fine_tune_cnn', action='store_true', help='fine tune pre-trained CNN if True')
parser.add_argument('--resnet_root', default='Model/Resnet/', help='path the pre-trained cnn models')
parser.add_argument('--crop_size', type=int, default=224, help='crop size of image')
parser.add_argument('--path_image', default='Model/MultimodelNER/VLSP2021/Image', help='path to images')
# parser.add_argument('--mm_model', default='TomBert', help='model name') #
parser.add_argument('--server_ip', type=str, default='', help="Can be used for distant debugging.")
parser.add_argument('--server_port', type=str, default='', help="Can be used for distant debugging.")
args = parser.parse_args()



processors = {
    "twitter2015": MNERProcessor_2021,
    "twitter2017": MNERProcessor_2021,
    "sonba": MNERProcessor_2021
}



random.seed(args.seed)
np.random.seed(args.seed)
torch.manual_seed(args.seed)


task_name = args.task_name.lower()



processor = processors[task_name]()
label_list = processor.get_labels()
auxlabel_list = processor.get_auxlabels()
num_labels = len(label_list) + 1  # label 0 corresponds to padding, label in label_list starts from 1
auxnum_labels = len(auxlabel_list) + 1  # label 0 corresponds to padding, label in label_list starts from 1

start_label_id = processor.get_start_label_id()
stop_label_id = processor.get_stop_label_id()

# ''' initialization of our conversion matrix, in our implementation, it is a 7*12 matrix initialized as follows:
trans_matrix = np.zeros((auxnum_labels, num_labels), dtype=float)
trans_matrix[0, 0] = 1  # pad to pad
trans_matrix[1, 1] = 1  # O to O
trans_matrix[2, 2] = 0.25  # B to B-MISC
trans_matrix[2, 4] = 0.25  # B to B-PER
trans_matrix[2, 6] = 0.25  # B to B-ORG
trans_matrix[2, 8] = 0.25  # B to B-LOC
trans_matrix[3, 3] = 0.25  # I to I-MISC
trans_matrix[3, 5] = 0.25  # I to I-PER
trans_matrix[3, 7] = 0.25  # I to I-ORG
trans_matrix[3, 9] = 0.25  # I to I-LOC
trans_matrix[4, 10] = 1  # X to X
trans_matrix[5, 11] = 1  # [CLS] to [CLS]
trans_matrix[6, 12] = 1  # [SEP] to [SEP]
'''
trans_matrix = np.zeros((num_labels, auxnum_labels), dtype=float)
trans_matrix[0,0]=1 # pad to pad
trans_matrix[1,1]=1
trans_matrix[2,2]=1
trans_matrix[4,2]=1
trans_matrix[6,2]=1
trans_matrix[8,2]=1
trans_matrix[3,3]=1
trans_matrix[5,3]=1
trans_matrix[7,3]=1
trans_matrix[9,3]=1
trans_matrix[10,4]=1
trans_matrix[11,5]=1
trans_matrix[12,6]=1
'''
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

tokenizer = AutoTokenizer.from_pretrained(args.bert_model, do_lower_case=args.do_lower_case)



net = getattr(resnet, 'resnet152')()
net.load_state_dict(torch.load(os.path.join(args.resnet_root, 'resnet152.pth')))
encoder = myResnet(net, args.fine_tune_cnn, device)


output_model_file = os.path.join(args.output_dir, WEIGHTS_NAME)
# output_config_file = os.path.join(args.output_dir, CONFIG_NAME)
output_encoder_file = os.path.join(args.output_dir, "pytorch_encoder.bin")

temp = args.temp
temp_lamb = args.temp_lamb
lamb = args.lamb
negative_rate = args.negative_rate
# # loadmodel
#     model = UMT.from_pretrained(args.bert_model,
#                                 cache_dir=args.cache_dir, layer_num1=args.layer_num1,
#                                 layer_num2=args.layer_num2,
#                                 layer_num3=args.layer_num3,
#                                 num_labels_=num_labels, auxnum_labels=auxnum_labels)
#     model.load_state_dict(torch.load(output_model_file,map_location=torch.device('cpu')))
#     model.to(device)
#     encoder_state_dict = torch.load(output_encoder_file,map_location=torch.device('cpu'))
#     encoder.load_state_dict(encoder_state_dict)
#     encoder.to(device)
#     print(model)

def load_model(output_model_file, output_encoder_file,encoder,num_labels,auxnum_labels):
    model = UMT.from_pretrained(args.bert_model,
                                cache_dir=args.cache_dir, layer_num1=args.layer_num1,
                                layer_num2=args.layer_num2,
                                layer_num3=args.layer_num3,
                                num_labels_=num_labels, auxnum_labels=auxnum_labels)
    model.load_state_dict(torch.load(output_model_file, map_location=torch.device('cpu')))
    model.to(device)
    encoder_state_dict = torch.load(output_encoder_file, map_location=torch.device('cpu'))
    encoder.load_state_dict(encoder_state_dict)
    encoder.to(device)
    return model, encoder

model_umt,encoder_umt=load_model(output_model_file, output_encoder_file,encoder,num_labels,auxnum_labels)
#
#     # sentence = 'Thương biết_mấy những Thuận, những Liên, những Luận, Xuân, Nghĩa mỗi người một hoàn_cảnh nhưng đều rất giống nhau: rất ham học, rất cố_gắng để đạt mức hiểu biết cao nhất.'
#     # image_path = '/kaggle/working/data/014715.jpg'
#     # # crop_size = 224'
path_image='E:\demo_datn\pythonProject1\Model\MultimodelNER\VLSP2021\Image'
trans_matrix = np.zeros((auxnum_labels,num_labels), dtype=float)
trans_matrix[0,0]=1 # pad to pad
trans_matrix[1,1]=1 # O to O
trans_matrix[2,2]=0.25 # B to B-MISC
trans_matrix[2,4]=0.25 # B to B-PER
trans_matrix[2,6]=0.25 # B to B-ORG
trans_matrix[2,8]=0.25 # B to B-LOC
trans_matrix[3,3]=0.25 # I to I-MISC
trans_matrix[3,5]=0.25 # I to I-PER
trans_matrix[3,7]=0.25 # I to I-ORG
trans_matrix[3,9]=0.25 # I to I-LOC
trans_matrix[4,10]=1   # X to X
trans_matrix[5,11]=1   # [CLS] to [CLS]
trans_matrix[6,12]=1   # [SE
def predict(model_umt, encoder_umt, eval_examples, tokenizer, device,path_image,trans_matrix):

    features = convert_mm_examples_to_features_predict(eval_examples, 256, tokenizer, 224,path_image)

    input_ids = torch.tensor([f.input_ids for f in features], dtype=torch.long)
    input_mask = torch.tensor([f.input_mask for f in features], dtype=torch.long)
    added_input_mask = torch.tensor([f.added_input_mask for f in features], dtype=torch.long)
    segment_ids = torch.tensor([f.segment_ids for f in features], dtype=torch.long)
    img_feats = torch.stack([f.img_feat for f in features])
    print(img_feats)
    eval_data = TensorDataset(input_ids, input_mask, added_input_mask, segment_ids, img_feats)
    eval_sampler = SequentialSampler(eval_data)
    eval_dataloader = DataLoader(eval_data, sampler=eval_sampler, batch_size=16)

    model_umt.eval()
    encoder_umt.eval()

    y_pred = []
    label_map = {i: label for i, label in enumerate(label_list, 1)}
    label_map[0] = "<pad>"

    for input_ids, input_mask, added_input_mask, segment_ids, img_feats in tqdm(eval_dataloader, desc="Evaluating"):
        input_ids = input_ids.to(device)
        input_mask = input_mask.to(device)
        added_input_mask = added_input_mask.to(device)
        segment_ids = segment_ids.to(device)
        img_feats = img_feats.to(device)

        with torch.no_grad():
            imgs_f, img_mean, img_att = encoder_umt(img_feats)
            predicted_label_seq_ids = model_umt(input_ids, segment_ids, input_mask, added_input_mask, img_att,
                                                trans_matrix)

        logits = predicted_label_seq_ids
        input_mask = input_mask.to('cpu').numpy()

        for i, mask in enumerate(input_mask):
            temp_1 = []
            for j, m in enumerate(mask):
                if j == 0:
                    continue
                if m:
                    if label_map[logits[i][j]] not in ["<pad>", "<s>", "</s>", "X"]:
                        temp_1.append(label_map[logits[i][j]])
                else:
                    break
            y_pred.append(temp_1)

    a = eval_examples[0].text_a.split(" ")

    return y_pred, a

# eval_examples = get_test_examples_predict('Model/MultimodelNER/VLSP2021/Filetxt/')
# y_pred, a = predict(model_umt, encoder_umt, eval_examples, tokenizer, device,path_image,trans_matrix)
# print(y_pred)
# print(a)
# formatted_output = format_predictions(a, y_pred[0])
#
# final= process_predictions(formatted_output)
# final2= combine_entities(final)
# print(final2)
# final3= remove_B_prefix(final2)
# final4=combine_i_tags(final3)
# print(final3)