Update Model/MultimodelNER/VLSP2021/train_umt_2021.py
Browse files
Model/MultimodelNER/VLSP2021/train_umt_2021.py
CHANGED
@@ -1,351 +1,351 @@
|
|
1 |
-
import os
|
2 |
-
import sys
|
3 |
-
|
4 |
-
os.environ["CUDA_VISIBLE_DEVICES"] = "0"
|
5 |
-
import argparse
|
6 |
-
|
7 |
-
import logging
|
8 |
-
import random
|
9 |
-
import numpy as np
|
10 |
-
import torch
|
11 |
-
import torch.nn.functional as F
|
12 |
-
from transformers import AutoTokenizer, BertConfig
|
13 |
-
from Model.MultimodelNER.UMT import UMT
|
14 |
-
from Model.MultimodelNER import resnet as resnet
|
15 |
-
from Model.MultimodelNER.resnet_utils import myResnet
|
16 |
-
from Model.MultimodelNER.VLSP2021.dataset_roberta import convert_mm_examples_to_features, MNERProcessor_2021
|
17 |
-
from torch.utils.data import (DataLoader, RandomSampler, SequentialSampler,
|
18 |
-
TensorDataset)
|
19 |
-
from pytorch_pretrained_bert.optimization import BertAdam, warmup_linear
|
20 |
-
from Model.MultimodelNER.ner_evaluate import evaluate_each_class,evaluate
|
21 |
-
from seqeval.metrics import classification_report
|
22 |
-
from tqdm import tqdm, trange
|
23 |
-
import json
|
24 |
-
from Model.MultimodelNER.predict import convert_mm_examples_to_features_predict, get_test_examples_predict
|
25 |
-
from Model.MultimodelNER.Ner_processing import *
|
26 |
-
CONFIG_NAME = 'bert_config.json'
|
27 |
-
WEIGHTS_NAME = 'pytorch_model.bin'
|
28 |
-
|
29 |
-
logging.basicConfig(format='%(asctime)s - %(levelname)s - %(name)s - %(message)s',
|
30 |
-
datefmt='%m/%d/%Y %H:%M:%S',
|
31 |
-
level=logging.INFO)
|
32 |
-
logger = logging.getLogger(__name__)
|
33 |
-
parser = argparse.ArgumentParser()
|
34 |
-
## Required parameters
|
35 |
-
parser.add_argument("--negative_rate",
|
36 |
-
default=16,
|
37 |
-
type=int,
|
38 |
-
help="the negative samples rate")
|
39 |
-
|
40 |
-
parser.add_argument('--lamb',
|
41 |
-
default=0.62,
|
42 |
-
type=float)
|
43 |
-
|
44 |
-
parser.add_argument('--temp',
|
45 |
-
type=float,
|
46 |
-
default=0.179,
|
47 |
-
help="parameter for CL training")
|
48 |
-
|
49 |
-
parser.add_argument('--temp_lamb',
|
50 |
-
type=float,
|
51 |
-
default=0.7,
|
52 |
-
help="parameter for CL training")
|
53 |
-
|
54 |
-
parser.add_argument("--data_dir",
|
55 |
-
default='./data/twitter2017',
|
56 |
-
type=str,
|
57 |
-
|
58 |
-
help="The input data dir. Should contain the .tsv files (or other data files) for the task.")
|
59 |
-
parser.add_argument("--bert_model", default='vinai/phobert-base-v2', type=str)
|
60 |
-
parser.add_argument("--task_name",
|
61 |
-
default='sonba',
|
62 |
-
type=str,
|
63 |
-
|
64 |
-
help="The name of the task to train.")
|
65 |
-
parser.add_argument("--output_dir",
|
66 |
-
default='
|
67 |
-
type=str,
|
68 |
-
help="The output directory where the model predictions and checkpoints will be written.")
|
69 |
-
|
70 |
-
## Other parameters
|
71 |
-
parser.add_argument("--cache_dir",
|
72 |
-
default="",
|
73 |
-
type=str,
|
74 |
-
help="Where do you want to store the pre-trained models downloaded from s3")
|
75 |
-
|
76 |
-
parser.add_argument("--max_seq_length",
|
77 |
-
default=128,
|
78 |
-
type=int,
|
79 |
-
help="The maximum total input sequence length after WordPiece tokenization. \n"
|
80 |
-
"Sequences longer than this will be truncated, and sequences shorter \n"
|
81 |
-
"than this will be padded.")
|
82 |
-
|
83 |
-
parser.add_argument("--do_train",
|
84 |
-
action='store_true',
|
85 |
-
help="Whether to run training.")
|
86 |
-
|
87 |
-
parser.add_argument("--do_eval",
|
88 |
-
action='store_true',
|
89 |
-
help="Whether to run eval on the dev set.")
|
90 |
-
|
91 |
-
parser.add_argument("--do_lower_case",
|
92 |
-
action='store_true',
|
93 |
-
help="Set this flag if you are using an uncased model.")
|
94 |
-
|
95 |
-
parser.add_argument("--train_batch_size",
|
96 |
-
default=64,
|
97 |
-
type=int,
|
98 |
-
help="Total batch size for training.")
|
99 |
-
|
100 |
-
parser.add_argument("--eval_batch_size",
|
101 |
-
default=16,
|
102 |
-
type=int,
|
103 |
-
help="Total batch size for eval.")
|
104 |
-
|
105 |
-
parser.add_argument("--learning_rate",
|
106 |
-
default=5e-5,
|
107 |
-
type=float,
|
108 |
-
help="The initial learning rate for Adam.")
|
109 |
-
|
110 |
-
parser.add_argument("--num_train_epochs",
|
111 |
-
default=12.0,
|
112 |
-
type=float,
|
113 |
-
help="Total number of training epochs to perform.")
|
114 |
-
|
115 |
-
parser.add_argument("--warmup_proportion",
|
116 |
-
default=0.1,
|
117 |
-
type=float,
|
118 |
-
help="Proportion of training to perform linear learning rate warmup for. "
|
119 |
-
"E.g., 0.1 = 10%% of training.")
|
120 |
-
|
121 |
-
parser.add_argument("--no_cuda",
|
122 |
-
action='store_true',
|
123 |
-
help="Whether not to use CUDA when available")
|
124 |
-
|
125 |
-
parser.add_argument("--local_rank",
|
126 |
-
type=int,
|
127 |
-
default=-1,
|
128 |
-
help="local_rank for distributed training on gpus")
|
129 |
-
|
130 |
-
parser.add_argument('--seed',
|
131 |
-
type=int,
|
132 |
-
default=37,
|
133 |
-
help="random seed for initialization")
|
134 |
-
|
135 |
-
parser.add_argument('--gradient_accumulation_steps',
|
136 |
-
type=int,
|
137 |
-
default=1,
|
138 |
-
help="Number of updates steps to accumulate before performing a backward/update pass.")
|
139 |
-
|
140 |
-
parser.add_argument('--fp16',
|
141 |
-
action='store_true',
|
142 |
-
help="Whether to use 16-bit float precision instead of 32-bit")
|
143 |
-
|
144 |
-
parser.add_argument('--loss_scale',
|
145 |
-
type=float, default=0,
|
146 |
-
help="Loss scaling to improve fp16 numeric stability. Only used when fp16 set to True.\n"
|
147 |
-
"0 (default value): dynamic loss scaling.\n"
|
148 |
-
"Positive power of 2: static loss scaling value.\n")
|
149 |
-
|
150 |
-
parser.add_argument('--mm_model', default='MTCCMBert', help='model name') # 'MTCCMBert', 'NMMTCCMBert'
|
151 |
-
parser.add_argument('--layer_num1', type=int, default=1, help='number of txt2img layer')
|
152 |
-
parser.add_argument('--layer_num2', type=int, default=1, help='number of img2txt layer')
|
153 |
-
parser.add_argument('--layer_num3', type=int, default=1, help='number of txt2txt layer')
|
154 |
-
parser.add_argument('--fine_tune_cnn', action='store_true', help='fine tune pre-trained CNN if True')
|
155 |
-
parser.add_argument('--resnet_root', default='
|
156 |
-
parser.add_argument('--crop_size', type=int, default=224, help='crop size of image')
|
157 |
-
parser.add_argument('--path_image', default='
|
158 |
-
# parser.add_argument('--mm_model', default='TomBert', help='model name') #
|
159 |
-
parser.add_argument('--server_ip', type=str, default='', help="Can be used for distant debugging.")
|
160 |
-
parser.add_argument('--server_port', type=str, default='', help="Can be used for distant debugging.")
|
161 |
-
args = parser.parse_args()
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
processors = {
|
166 |
-
"twitter2015": MNERProcessor_2021,
|
167 |
-
"twitter2017": MNERProcessor_2021,
|
168 |
-
"sonba": MNERProcessor_2021
|
169 |
-
}
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
random.seed(args.seed)
|
174 |
-
np.random.seed(args.seed)
|
175 |
-
torch.manual_seed(args.seed)
|
176 |
-
|
177 |
-
|
178 |
-
task_name = args.task_name.lower()
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
processor = processors[task_name]()
|
183 |
-
label_list = processor.get_labels()
|
184 |
-
auxlabel_list = processor.get_auxlabels()
|
185 |
-
num_labels = len(label_list) + 1 # label 0 corresponds to padding, label in label_list starts from 1
|
186 |
-
auxnum_labels = len(auxlabel_list) + 1 # label 0 corresponds to padding, label in label_list starts from 1
|
187 |
-
|
188 |
-
start_label_id = processor.get_start_label_id()
|
189 |
-
stop_label_id = processor.get_stop_label_id()
|
190 |
-
|
191 |
-
# ''' initialization of our conversion matrix, in our implementation, it is a 7*12 matrix initialized as follows:
|
192 |
-
trans_matrix = np.zeros((auxnum_labels, num_labels), dtype=float)
|
193 |
-
trans_matrix[0, 0] = 1 # pad to pad
|
194 |
-
trans_matrix[1, 1] = 1 # O to O
|
195 |
-
trans_matrix[2, 2] = 0.25 # B to B-MISC
|
196 |
-
trans_matrix[2, 4] = 0.25 # B to B-PER
|
197 |
-
trans_matrix[2, 6] = 0.25 # B to B-ORG
|
198 |
-
trans_matrix[2, 8] = 0.25 # B to B-LOC
|
199 |
-
trans_matrix[3, 3] = 0.25 # I to I-MISC
|
200 |
-
trans_matrix[3, 5] = 0.25 # I to I-PER
|
201 |
-
trans_matrix[3, 7] = 0.25 # I to I-ORG
|
202 |
-
trans_matrix[3, 9] = 0.25 # I to I-LOC
|
203 |
-
trans_matrix[4, 10] = 1 # X to X
|
204 |
-
trans_matrix[5, 11] = 1 # [CLS] to [CLS]
|
205 |
-
trans_matrix[6, 12] = 1 # [SEP] to [SEP]
|
206 |
-
'''
|
207 |
-
trans_matrix = np.zeros((num_labels, auxnum_labels), dtype=float)
|
208 |
-
trans_matrix[0,0]=1 # pad to pad
|
209 |
-
trans_matrix[1,1]=1
|
210 |
-
trans_matrix[2,2]=1
|
211 |
-
trans_matrix[4,2]=1
|
212 |
-
trans_matrix[6,2]=1
|
213 |
-
trans_matrix[8,2]=1
|
214 |
-
trans_matrix[3,3]=1
|
215 |
-
trans_matrix[5,3]=1
|
216 |
-
trans_matrix[7,3]=1
|
217 |
-
trans_matrix[9,3]=1
|
218 |
-
trans_matrix[10,4]=1
|
219 |
-
trans_matrix[11,5]=1
|
220 |
-
trans_matrix[12,6]=1
|
221 |
-
'''
|
222 |
-
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
223 |
-
|
224 |
-
tokenizer = AutoTokenizer.from_pretrained(args.bert_model, do_lower_case=args.do_lower_case)
|
225 |
-
|
226 |
-
|
227 |
-
|
228 |
-
net = getattr(resnet, 'resnet152')()
|
229 |
-
net.load_state_dict(torch.load(os.path.join(args.resnet_root, 'resnet152.pth')))
|
230 |
-
encoder = myResnet(net, args.fine_tune_cnn, device)
|
231 |
-
|
232 |
-
|
233 |
-
output_model_file = os.path.join(args.output_dir, WEIGHTS_NAME)
|
234 |
-
# output_config_file = os.path.join(args.output_dir, CONFIG_NAME)
|
235 |
-
output_encoder_file = os.path.join(args.output_dir, "pytorch_encoder.bin")
|
236 |
-
|
237 |
-
temp = args.temp
|
238 |
-
temp_lamb = args.temp_lamb
|
239 |
-
lamb = args.lamb
|
240 |
-
negative_rate = args.negative_rate
|
241 |
-
# # loadmodel
|
242 |
-
# model = UMT.from_pretrained(args.bert_model,
|
243 |
-
# cache_dir=args.cache_dir, layer_num1=args.layer_num1,
|
244 |
-
# layer_num2=args.layer_num2,
|
245 |
-
# layer_num3=args.layer_num3,
|
246 |
-
# num_labels_=num_labels, auxnum_labels=auxnum_labels)
|
247 |
-
# model.load_state_dict(torch.load(output_model_file,map_location=torch.device('cpu')))
|
248 |
-
# model.to(device)
|
249 |
-
# encoder_state_dict = torch.load(output_encoder_file,map_location=torch.device('cpu'))
|
250 |
-
# encoder.load_state_dict(encoder_state_dict)
|
251 |
-
# encoder.to(device)
|
252 |
-
# print(model)
|
253 |
-
|
254 |
-
def load_model(output_model_file, output_encoder_file,encoder,num_labels,auxnum_labels):
|
255 |
-
model = UMT.from_pretrained(args.bert_model,
|
256 |
-
cache_dir=args.cache_dir, layer_num1=args.layer_num1,
|
257 |
-
layer_num2=args.layer_num2,
|
258 |
-
layer_num3=args.layer_num3,
|
259 |
-
num_labels_=num_labels, auxnum_labels=auxnum_labels)
|
260 |
-
model.load_state_dict(torch.load(output_model_file, map_location=torch.device('cpu')))
|
261 |
-
model.to(device)
|
262 |
-
encoder_state_dict = torch.load(output_encoder_file, map_location=torch.device('cpu'))
|
263 |
-
encoder.load_state_dict(encoder_state_dict)
|
264 |
-
encoder.to(device)
|
265 |
-
return model, encoder
|
266 |
-
|
267 |
-
model_umt,encoder_umt=load_model(output_model_file, output_encoder_file,encoder,num_labels,auxnum_labels)
|
268 |
-
#
|
269 |
-
# # sentence = 'Thương biết_mấy những Thuận, những Liên, những Luận, Xuân, Nghĩa mỗi người một hoàn_cảnh nhưng đều rất giống nhau: rất ham học, rất cố_gắng để đạt mức hiểu biết cao nhất.'
|
270 |
-
# # image_path = '/kaggle/working/data/014715.jpg'
|
271 |
-
# # # crop_size = 224'
|
272 |
-
path_image='E:\demo_datn\pythonProject1\Model\MultimodelNER\VLSP2021\Image'
|
273 |
-
trans_matrix = np.zeros((auxnum_labels,num_labels), dtype=float)
|
274 |
-
trans_matrix[0,0]=1 # pad to pad
|
275 |
-
trans_matrix[1,1]=1 # O to O
|
276 |
-
trans_matrix[2,2]=0.25 # B to B-MISC
|
277 |
-
trans_matrix[2,4]=0.25 # B to B-PER
|
278 |
-
trans_matrix[2,6]=0.25 # B to B-ORG
|
279 |
-
trans_matrix[2,8]=0.25 # B to B-LOC
|
280 |
-
trans_matrix[3,3]=0.25 # I to I-MISC
|
281 |
-
trans_matrix[3,5]=0.25 # I to I-PER
|
282 |
-
trans_matrix[3,7]=0.25 # I to I-ORG
|
283 |
-
trans_matrix[3,9]=0.25 # I to I-LOC
|
284 |
-
trans_matrix[4,10]=1 # X to X
|
285 |
-
trans_matrix[5,11]=1 # [CLS] to [CLS]
|
286 |
-
trans_matrix[6,12]=1 # [SE
|
287 |
-
def predict(model_umt, encoder_umt, eval_examples, tokenizer, device,path_image,trans_matrix):
|
288 |
-
|
289 |
-
features = convert_mm_examples_to_features_predict(eval_examples, 256, tokenizer, 224,path_image)
|
290 |
-
|
291 |
-
input_ids = torch.tensor([f.input_ids for f in features], dtype=torch.long)
|
292 |
-
input_mask = torch.tensor([f.input_mask for f in features], dtype=torch.long)
|
293 |
-
added_input_mask = torch.tensor([f.added_input_mask for f in features], dtype=torch.long)
|
294 |
-
segment_ids = torch.tensor([f.segment_ids for f in features], dtype=torch.long)
|
295 |
-
img_feats = torch.stack([f.img_feat for f in features])
|
296 |
-
print(img_feats)
|
297 |
-
eval_data = TensorDataset(input_ids, input_mask, added_input_mask, segment_ids, img_feats)
|
298 |
-
eval_sampler = SequentialSampler(eval_data)
|
299 |
-
eval_dataloader = DataLoader(eval_data, sampler=eval_sampler, batch_size=16)
|
300 |
-
|
301 |
-
model_umt.eval()
|
302 |
-
encoder_umt.eval()
|
303 |
-
|
304 |
-
y_pred = []
|
305 |
-
label_map = {i: label for i, label in enumerate(label_list, 1)}
|
306 |
-
label_map[0] = "<pad>"
|
307 |
-
|
308 |
-
for input_ids, input_mask, added_input_mask, segment_ids, img_feats in tqdm(eval_dataloader, desc="Evaluating"):
|
309 |
-
input_ids = input_ids.to(device)
|
310 |
-
input_mask = input_mask.to(device)
|
311 |
-
added_input_mask = added_input_mask.to(device)
|
312 |
-
segment_ids = segment_ids.to(device)
|
313 |
-
img_feats = img_feats.to(device)
|
314 |
-
|
315 |
-
with torch.no_grad():
|
316 |
-
imgs_f, img_mean, img_att = encoder_umt(img_feats)
|
317 |
-
predicted_label_seq_ids = model_umt(input_ids, segment_ids, input_mask, added_input_mask, img_att,
|
318 |
-
trans_matrix)
|
319 |
-
|
320 |
-
logits = predicted_label_seq_ids
|
321 |
-
input_mask = input_mask.to('cpu').numpy()
|
322 |
-
|
323 |
-
for i, mask in enumerate(input_mask):
|
324 |
-
temp_1 = []
|
325 |
-
for j, m in enumerate(mask):
|
326 |
-
if j == 0:
|
327 |
-
continue
|
328 |
-
if m:
|
329 |
-
if label_map[logits[i][j]] not in ["<pad>", "<s>", "</s>", "X"]:
|
330 |
-
temp_1.append(label_map[logits[i][j]])
|
331 |
-
else:
|
332 |
-
break
|
333 |
-
y_pred.append(temp_1)
|
334 |
-
|
335 |
-
a = eval_examples[0].text_a.split(" ")
|
336 |
-
|
337 |
-
return y_pred, a
|
338 |
-
|
339 |
-
# eval_examples = get_test_examples_predict('
|
340 |
-
# y_pred, a = predict(model_umt, encoder_umt, eval_examples, tokenizer, device,path_image,trans_matrix)
|
341 |
-
# print(y_pred)
|
342 |
-
# print(a)
|
343 |
-
# formatted_output = format_predictions(a, y_pred[0])
|
344 |
-
#
|
345 |
-
# final= process_predictions(formatted_output)
|
346 |
-
# final2= combine_entities(final)
|
347 |
-
# print(final2)
|
348 |
-
# final3= remove_B_prefix(final2)
|
349 |
-
# final4=combine_i_tags(final3)
|
350 |
-
# print(final3)
|
351 |
-
|
|
|
1 |
+
import os
|
2 |
+
import sys
|
3 |
+
|
4 |
+
os.environ["CUDA_VISIBLE_DEVICES"] = "0"
|
5 |
+
import argparse
|
6 |
+
|
7 |
+
import logging
|
8 |
+
import random
|
9 |
+
import numpy as np
|
10 |
+
import torch
|
11 |
+
import torch.nn.functional as F
|
12 |
+
from transformers import AutoTokenizer, BertConfig
|
13 |
+
from Model.MultimodelNER.UMT import UMT
|
14 |
+
from Model.MultimodelNER import resnet as resnet
|
15 |
+
from Model.MultimodelNER.resnet_utils import myResnet
|
16 |
+
from Model.MultimodelNER.VLSP2021.dataset_roberta import convert_mm_examples_to_features, MNERProcessor_2021
|
17 |
+
from torch.utils.data import (DataLoader, RandomSampler, SequentialSampler,
|
18 |
+
TensorDataset)
|
19 |
+
from pytorch_pretrained_bert.optimization import BertAdam, warmup_linear
|
20 |
+
from Model.MultimodelNER.ner_evaluate import evaluate_each_class,evaluate
|
21 |
+
from seqeval.metrics import classification_report
|
22 |
+
from tqdm import tqdm, trange
|
23 |
+
import json
|
24 |
+
from Model.MultimodelNER.predict import convert_mm_examples_to_features_predict, get_test_examples_predict
|
25 |
+
from Model.MultimodelNER.Ner_processing import *
|
26 |
+
CONFIG_NAME = 'bert_config.json'
|
27 |
+
WEIGHTS_NAME = 'pytorch_model.bin'
|
28 |
+
|
29 |
+
logging.basicConfig(format='%(asctime)s - %(levelname)s - %(name)s - %(message)s',
|
30 |
+
datefmt='%m/%d/%Y %H:%M:%S',
|
31 |
+
level=logging.INFO)
|
32 |
+
logger = logging.getLogger(__name__)
|
33 |
+
parser = argparse.ArgumentParser()
|
34 |
+
## Required parameters
|
35 |
+
parser.add_argument("--negative_rate",
|
36 |
+
default=16,
|
37 |
+
type=int,
|
38 |
+
help="the negative samples rate")
|
39 |
+
|
40 |
+
parser.add_argument('--lamb',
|
41 |
+
default=0.62,
|
42 |
+
type=float)
|
43 |
+
|
44 |
+
parser.add_argument('--temp',
|
45 |
+
type=float,
|
46 |
+
default=0.179,
|
47 |
+
help="parameter for CL training")
|
48 |
+
|
49 |
+
parser.add_argument('--temp_lamb',
|
50 |
+
type=float,
|
51 |
+
default=0.7,
|
52 |
+
help="parameter for CL training")
|
53 |
+
|
54 |
+
parser.add_argument("--data_dir",
|
55 |
+
default='./data/twitter2017',
|
56 |
+
type=str,
|
57 |
+
|
58 |
+
help="The input data dir. Should contain the .tsv files (or other data files) for the task.")
|
59 |
+
parser.add_argument("--bert_model", default='vinai/phobert-base-v2', type=str)
|
60 |
+
parser.add_argument("--task_name",
|
61 |
+
default='sonba',
|
62 |
+
type=str,
|
63 |
+
|
64 |
+
help="The name of the task to train.")
|
65 |
+
parser.add_argument("--output_dir",
|
66 |
+
default='Model/MultimodelNER/VLSP2021/best_model/',
|
67 |
+
type=str,
|
68 |
+
help="The output directory where the model predictions and checkpoints will be written.")
|
69 |
+
|
70 |
+
## Other parameters
|
71 |
+
parser.add_argument("--cache_dir",
|
72 |
+
default="",
|
73 |
+
type=str,
|
74 |
+
help="Where do you want to store the pre-trained models downloaded from s3")
|
75 |
+
|
76 |
+
parser.add_argument("--max_seq_length",
|
77 |
+
default=128,
|
78 |
+
type=int,
|
79 |
+
help="The maximum total input sequence length after WordPiece tokenization. \n"
|
80 |
+
"Sequences longer than this will be truncated, and sequences shorter \n"
|
81 |
+
"than this will be padded.")
|
82 |
+
|
83 |
+
parser.add_argument("--do_train",
|
84 |
+
action='store_true',
|
85 |
+
help="Whether to run training.")
|
86 |
+
|
87 |
+
parser.add_argument("--do_eval",
|
88 |
+
action='store_true',
|
89 |
+
help="Whether to run eval on the dev set.")
|
90 |
+
|
91 |
+
parser.add_argument("--do_lower_case",
|
92 |
+
action='store_true',
|
93 |
+
help="Set this flag if you are using an uncased model.")
|
94 |
+
|
95 |
+
parser.add_argument("--train_batch_size",
|
96 |
+
default=64,
|
97 |
+
type=int,
|
98 |
+
help="Total batch size for training.")
|
99 |
+
|
100 |
+
parser.add_argument("--eval_batch_size",
|
101 |
+
default=16,
|
102 |
+
type=int,
|
103 |
+
help="Total batch size for eval.")
|
104 |
+
|
105 |
+
parser.add_argument("--learning_rate",
|
106 |
+
default=5e-5,
|
107 |
+
type=float,
|
108 |
+
help="The initial learning rate for Adam.")
|
109 |
+
|
110 |
+
parser.add_argument("--num_train_epochs",
|
111 |
+
default=12.0,
|
112 |
+
type=float,
|
113 |
+
help="Total number of training epochs to perform.")
|
114 |
+
|
115 |
+
parser.add_argument("--warmup_proportion",
|
116 |
+
default=0.1,
|
117 |
+
type=float,
|
118 |
+
help="Proportion of training to perform linear learning rate warmup for. "
|
119 |
+
"E.g., 0.1 = 10%% of training.")
|
120 |
+
|
121 |
+
parser.add_argument("--no_cuda",
|
122 |
+
action='store_true',
|
123 |
+
help="Whether not to use CUDA when available")
|
124 |
+
|
125 |
+
parser.add_argument("--local_rank",
|
126 |
+
type=int,
|
127 |
+
default=-1,
|
128 |
+
help="local_rank for distributed training on gpus")
|
129 |
+
|
130 |
+
parser.add_argument('--seed',
|
131 |
+
type=int,
|
132 |
+
default=37,
|
133 |
+
help="random seed for initialization")
|
134 |
+
|
135 |
+
parser.add_argument('--gradient_accumulation_steps',
|
136 |
+
type=int,
|
137 |
+
default=1,
|
138 |
+
help="Number of updates steps to accumulate before performing a backward/update pass.")
|
139 |
+
|
140 |
+
parser.add_argument('--fp16',
|
141 |
+
action='store_true',
|
142 |
+
help="Whether to use 16-bit float precision instead of 32-bit")
|
143 |
+
|
144 |
+
parser.add_argument('--loss_scale',
|
145 |
+
type=float, default=0,
|
146 |
+
help="Loss scaling to improve fp16 numeric stability. Only used when fp16 set to True.\n"
|
147 |
+
"0 (default value): dynamic loss scaling.\n"
|
148 |
+
"Positive power of 2: static loss scaling value.\n")
|
149 |
+
|
150 |
+
parser.add_argument('--mm_model', default='MTCCMBert', help='model name') # 'MTCCMBert', 'NMMTCCMBert'
|
151 |
+
parser.add_argument('--layer_num1', type=int, default=1, help='number of txt2img layer')
|
152 |
+
parser.add_argument('--layer_num2', type=int, default=1, help='number of img2txt layer')
|
153 |
+
parser.add_argument('--layer_num3', type=int, default=1, help='number of txt2txt layer')
|
154 |
+
parser.add_argument('--fine_tune_cnn', action='store_true', help='fine tune pre-trained CNN if True')
|
155 |
+
parser.add_argument('--resnet_root', default='Model/Resnet/', help='path the pre-trained cnn models')
|
156 |
+
parser.add_argument('--crop_size', type=int, default=224, help='crop size of image')
|
157 |
+
parser.add_argument('--path_image', default='Model/MultimodelNER/VLSP2021/Image', help='path to images')
|
158 |
+
# parser.add_argument('--mm_model', default='TomBert', help='model name') #
|
159 |
+
parser.add_argument('--server_ip', type=str, default='', help="Can be used for distant debugging.")
|
160 |
+
parser.add_argument('--server_port', type=str, default='', help="Can be used for distant debugging.")
|
161 |
+
args = parser.parse_args()
|
162 |
+
|
163 |
+
|
164 |
+
|
165 |
+
processors = {
|
166 |
+
"twitter2015": MNERProcessor_2021,
|
167 |
+
"twitter2017": MNERProcessor_2021,
|
168 |
+
"sonba": MNERProcessor_2021
|
169 |
+
}
|
170 |
+
|
171 |
+
|
172 |
+
|
173 |
+
random.seed(args.seed)
|
174 |
+
np.random.seed(args.seed)
|
175 |
+
torch.manual_seed(args.seed)
|
176 |
+
|
177 |
+
|
178 |
+
task_name = args.task_name.lower()
|
179 |
+
|
180 |
+
|
181 |
+
|
182 |
+
processor = processors[task_name]()
|
183 |
+
label_list = processor.get_labels()
|
184 |
+
auxlabel_list = processor.get_auxlabels()
|
185 |
+
num_labels = len(label_list) + 1 # label 0 corresponds to padding, label in label_list starts from 1
|
186 |
+
auxnum_labels = len(auxlabel_list) + 1 # label 0 corresponds to padding, label in label_list starts from 1
|
187 |
+
|
188 |
+
start_label_id = processor.get_start_label_id()
|
189 |
+
stop_label_id = processor.get_stop_label_id()
|
190 |
+
|
191 |
+
# ''' initialization of our conversion matrix, in our implementation, it is a 7*12 matrix initialized as follows:
|
192 |
+
trans_matrix = np.zeros((auxnum_labels, num_labels), dtype=float)
|
193 |
+
trans_matrix[0, 0] = 1 # pad to pad
|
194 |
+
trans_matrix[1, 1] = 1 # O to O
|
195 |
+
trans_matrix[2, 2] = 0.25 # B to B-MISC
|
196 |
+
trans_matrix[2, 4] = 0.25 # B to B-PER
|
197 |
+
trans_matrix[2, 6] = 0.25 # B to B-ORG
|
198 |
+
trans_matrix[2, 8] = 0.25 # B to B-LOC
|
199 |
+
trans_matrix[3, 3] = 0.25 # I to I-MISC
|
200 |
+
trans_matrix[3, 5] = 0.25 # I to I-PER
|
201 |
+
trans_matrix[3, 7] = 0.25 # I to I-ORG
|
202 |
+
trans_matrix[3, 9] = 0.25 # I to I-LOC
|
203 |
+
trans_matrix[4, 10] = 1 # X to X
|
204 |
+
trans_matrix[5, 11] = 1 # [CLS] to [CLS]
|
205 |
+
trans_matrix[6, 12] = 1 # [SEP] to [SEP]
|
206 |
+
'''
|
207 |
+
trans_matrix = np.zeros((num_labels, auxnum_labels), dtype=float)
|
208 |
+
trans_matrix[0,0]=1 # pad to pad
|
209 |
+
trans_matrix[1,1]=1
|
210 |
+
trans_matrix[2,2]=1
|
211 |
+
trans_matrix[4,2]=1
|
212 |
+
trans_matrix[6,2]=1
|
213 |
+
trans_matrix[8,2]=1
|
214 |
+
trans_matrix[3,3]=1
|
215 |
+
trans_matrix[5,3]=1
|
216 |
+
trans_matrix[7,3]=1
|
217 |
+
trans_matrix[9,3]=1
|
218 |
+
trans_matrix[10,4]=1
|
219 |
+
trans_matrix[11,5]=1
|
220 |
+
trans_matrix[12,6]=1
|
221 |
+
'''
|
222 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
223 |
+
|
224 |
+
tokenizer = AutoTokenizer.from_pretrained(args.bert_model, do_lower_case=args.do_lower_case)
|
225 |
+
|
226 |
+
|
227 |
+
|
228 |
+
net = getattr(resnet, 'resnet152')()
|
229 |
+
net.load_state_dict(torch.load(os.path.join(args.resnet_root, 'resnet152.pth')))
|
230 |
+
encoder = myResnet(net, args.fine_tune_cnn, device)
|
231 |
+
|
232 |
+
|
233 |
+
output_model_file = os.path.join(args.output_dir, WEIGHTS_NAME)
|
234 |
+
# output_config_file = os.path.join(args.output_dir, CONFIG_NAME)
|
235 |
+
output_encoder_file = os.path.join(args.output_dir, "pytorch_encoder.bin")
|
236 |
+
|
237 |
+
temp = args.temp
|
238 |
+
temp_lamb = args.temp_lamb
|
239 |
+
lamb = args.lamb
|
240 |
+
negative_rate = args.negative_rate
|
241 |
+
# # loadmodel
|
242 |
+
# model = UMT.from_pretrained(args.bert_model,
|
243 |
+
# cache_dir=args.cache_dir, layer_num1=args.layer_num1,
|
244 |
+
# layer_num2=args.layer_num2,
|
245 |
+
# layer_num3=args.layer_num3,
|
246 |
+
# num_labels_=num_labels, auxnum_labels=auxnum_labels)
|
247 |
+
# model.load_state_dict(torch.load(output_model_file,map_location=torch.device('cpu')))
|
248 |
+
# model.to(device)
|
249 |
+
# encoder_state_dict = torch.load(output_encoder_file,map_location=torch.device('cpu'))
|
250 |
+
# encoder.load_state_dict(encoder_state_dict)
|
251 |
+
# encoder.to(device)
|
252 |
+
# print(model)
|
253 |
+
|
254 |
+
def load_model(output_model_file, output_encoder_file,encoder,num_labels,auxnum_labels):
|
255 |
+
model = UMT.from_pretrained(args.bert_model,
|
256 |
+
cache_dir=args.cache_dir, layer_num1=args.layer_num1,
|
257 |
+
layer_num2=args.layer_num2,
|
258 |
+
layer_num3=args.layer_num3,
|
259 |
+
num_labels_=num_labels, auxnum_labels=auxnum_labels)
|
260 |
+
model.load_state_dict(torch.load(output_model_file, map_location=torch.device('cpu')))
|
261 |
+
model.to(device)
|
262 |
+
encoder_state_dict = torch.load(output_encoder_file, map_location=torch.device('cpu'))
|
263 |
+
encoder.load_state_dict(encoder_state_dict)
|
264 |
+
encoder.to(device)
|
265 |
+
return model, encoder
|
266 |
+
|
267 |
+
model_umt,encoder_umt=load_model(output_model_file, output_encoder_file,encoder,num_labels,auxnum_labels)
|
268 |
+
#
|
269 |
+
# # sentence = 'Thương biết_mấy những Thuận, những Liên, những Luận, Xuân, Nghĩa mỗi người một hoàn_cảnh nhưng đều rất giống nhau: rất ham học, rất cố_gắng để đạt mức hiểu biết cao nhất.'
|
270 |
+
# # image_path = '/kaggle/working/data/014715.jpg'
|
271 |
+
# # # crop_size = 224'
|
272 |
+
path_image='E:\demo_datn\pythonProject1\Model\MultimodelNER\VLSP2021\Image'
|
273 |
+
trans_matrix = np.zeros((auxnum_labels,num_labels), dtype=float)
|
274 |
+
trans_matrix[0,0]=1 # pad to pad
|
275 |
+
trans_matrix[1,1]=1 # O to O
|
276 |
+
trans_matrix[2,2]=0.25 # B to B-MISC
|
277 |
+
trans_matrix[2,4]=0.25 # B to B-PER
|
278 |
+
trans_matrix[2,6]=0.25 # B to B-ORG
|
279 |
+
trans_matrix[2,8]=0.25 # B to B-LOC
|
280 |
+
trans_matrix[3,3]=0.25 # I to I-MISC
|
281 |
+
trans_matrix[3,5]=0.25 # I to I-PER
|
282 |
+
trans_matrix[3,7]=0.25 # I to I-ORG
|
283 |
+
trans_matrix[3,9]=0.25 # I to I-LOC
|
284 |
+
trans_matrix[4,10]=1 # X to X
|
285 |
+
trans_matrix[5,11]=1 # [CLS] to [CLS]
|
286 |
+
trans_matrix[6,12]=1 # [SE
|
287 |
+
def predict(model_umt, encoder_umt, eval_examples, tokenizer, device,path_image,trans_matrix):
|
288 |
+
|
289 |
+
features = convert_mm_examples_to_features_predict(eval_examples, 256, tokenizer, 224,path_image)
|
290 |
+
|
291 |
+
input_ids = torch.tensor([f.input_ids for f in features], dtype=torch.long)
|
292 |
+
input_mask = torch.tensor([f.input_mask for f in features], dtype=torch.long)
|
293 |
+
added_input_mask = torch.tensor([f.added_input_mask for f in features], dtype=torch.long)
|
294 |
+
segment_ids = torch.tensor([f.segment_ids for f in features], dtype=torch.long)
|
295 |
+
img_feats = torch.stack([f.img_feat for f in features])
|
296 |
+
print(img_feats)
|
297 |
+
eval_data = TensorDataset(input_ids, input_mask, added_input_mask, segment_ids, img_feats)
|
298 |
+
eval_sampler = SequentialSampler(eval_data)
|
299 |
+
eval_dataloader = DataLoader(eval_data, sampler=eval_sampler, batch_size=16)
|
300 |
+
|
301 |
+
model_umt.eval()
|
302 |
+
encoder_umt.eval()
|
303 |
+
|
304 |
+
y_pred = []
|
305 |
+
label_map = {i: label for i, label in enumerate(label_list, 1)}
|
306 |
+
label_map[0] = "<pad>"
|
307 |
+
|
308 |
+
for input_ids, input_mask, added_input_mask, segment_ids, img_feats in tqdm(eval_dataloader, desc="Evaluating"):
|
309 |
+
input_ids = input_ids.to(device)
|
310 |
+
input_mask = input_mask.to(device)
|
311 |
+
added_input_mask = added_input_mask.to(device)
|
312 |
+
segment_ids = segment_ids.to(device)
|
313 |
+
img_feats = img_feats.to(device)
|
314 |
+
|
315 |
+
with torch.no_grad():
|
316 |
+
imgs_f, img_mean, img_att = encoder_umt(img_feats)
|
317 |
+
predicted_label_seq_ids = model_umt(input_ids, segment_ids, input_mask, added_input_mask, img_att,
|
318 |
+
trans_matrix)
|
319 |
+
|
320 |
+
logits = predicted_label_seq_ids
|
321 |
+
input_mask = input_mask.to('cpu').numpy()
|
322 |
+
|
323 |
+
for i, mask in enumerate(input_mask):
|
324 |
+
temp_1 = []
|
325 |
+
for j, m in enumerate(mask):
|
326 |
+
if j == 0:
|
327 |
+
continue
|
328 |
+
if m:
|
329 |
+
if label_map[logits[i][j]] not in ["<pad>", "<s>", "</s>", "X"]:
|
330 |
+
temp_1.append(label_map[logits[i][j]])
|
331 |
+
else:
|
332 |
+
break
|
333 |
+
y_pred.append(temp_1)
|
334 |
+
|
335 |
+
a = eval_examples[0].text_a.split(" ")
|
336 |
+
|
337 |
+
return y_pred, a
|
338 |
+
|
339 |
+
# eval_examples = get_test_examples_predict('Model/MultimodelNER/VLSP2021/Filetxt/')
|
340 |
+
# y_pred, a = predict(model_umt, encoder_umt, eval_examples, tokenizer, device,path_image,trans_matrix)
|
341 |
+
# print(y_pred)
|
342 |
+
# print(a)
|
343 |
+
# formatted_output = format_predictions(a, y_pred[0])
|
344 |
+
#
|
345 |
+
# final= process_predictions(formatted_output)
|
346 |
+
# final2= combine_entities(final)
|
347 |
+
# print(final2)
|
348 |
+
# final3= remove_B_prefix(final2)
|
349 |
+
# final4=combine_i_tags(final3)
|
350 |
+
# print(final3)
|
351 |
+
|