OpenSLU / common /utils.py
LightChen2333's picture
Upload 78 files
223340a
raw
history blame
15.9 kB
import functools
import importlib
import json
import os
import tarfile
from typing import List, Tuple
import zipfile
from collections import Callable
from ruamel import yaml
import requests
import torch
from torch.nn.utils.rnn import pad_sequence
from tqdm import tqdm
from torch import Tensor
import argparse
class InputData():
"""input datas class
"""
def __init__(self, inputs: List =None):
"""init input datas class
if inputs is None:
this class can be used to save all InputData in the history by 'merge_input_data(X:InputData)'
else:
this class can be used for model input.
Args:
inputs (List, optional): inputs with [tokenized_data, slot, intent]. Defaults to None.
"""
if inputs == None:
self.slot = []
self.intent = []
self.input_ids = None
self.token_type_ids = None
self.attention_mask = None
self.seq_lens = None
else:
self.input_ids = inputs[0].input_ids
self.token_type_ids = None
if hasattr(inputs[0], "token_type_ids"):
self.token_type_ids = inputs[0].token_type_ids
self.attention_mask = inputs[0].attention_mask
if len(inputs)>=2:
self.slot = inputs[1]
if len(inputs)>=3:
self.intent = inputs[2]
self.seq_lens = self.attention_mask.sum(-1)
def get_inputs(self):
""" get tokenized_data
Returns:
dict: tokenized data
"""
res = {
"input_ids": self.input_ids,
"attention_mask": self.attention_mask
}
if self.token_type_ids is not None:
res["token_type_ids"] = self.token_type_ids
return res
def merge_input_data(self, inp: "InputData"):
"""merge another InputData object with slot and intent
Args:
inp (InputData): another InputData object
"""
self.slot += inp.slot
self.intent += inp.intent
def get_slot_mask(self, ignore_index:int)->Tensor:
"""get slot mask
Args:
ignore_index (int): ignore index used in slot padding
Returns:
Tensor: mask tensor
"""
mask = self.slot != ignore_index
mask[:, 0] = torch.ones_like(mask[:, 0]).to(self.slot.device)
return mask
def get_item(self, index, tokenizer=None, intent_map=None, slot_map=None, ignore_index = -100):
res = {"input_ids": self.input_ids[index]}
if tokenizer is not None:
res["tokens"] = [tokenizer.decode(x) for x in self.input_ids[index]]
if intent_map is not None:
intents = self.intent.tolist()
if isinstance(intents[index], list):
res["intent"] = [intent_map[int(x)] for x in intents[index]]
else:
res["intent"] = intent_map[intents[index]]
if slot_map is not None:
res["slot"] = [slot_map[x] if x != ignore_index else "#" for x in self.slot.tolist()[index]]
return res
class OutputData():
"""output data class
"""
def __init__(self, intent_ids=None, slot_ids=None):
"""init output data class
if intent_ids is None and slot_ids is None:
this class can be used to save all OutputData in the history by 'merge_output_data(X:OutputData)'
else:
this class can be used to model output management.
Args:
intent_ids (Any, optional): list(Tensor) of intent ids / logits / strings. Defaults to None.
slot_ids (Any, optional): list(Tensor) of slot ids / ids / strings. Defaults to None.
"""
if intent_ids is None and slot_ids is None:
self.intent_ids = []
self.slot_ids = []
else:
if isinstance(intent_ids, ClassifierOutputData):
self.intent_ids = intent_ids.classifier_output
else:
self.intent_ids = intent_ids
if isinstance(slot_ids, ClassifierOutputData):
self.slot_ids = slot_ids.classifier_output
else:
self.slot_ids = slot_ids
def map_output(self, slot_map=None, intent_map=None):
""" map intent or slot ids to intent or slot string.
Args:
slot_map (dict, optional): slot id-to-string map. Defaults to None.
intent_map (dict, optional): intent id-to-string map. Defaults to None.
"""
if self.slot_ids is not None:
if slot_map:
self.slot_ids = [[slot_map[x] if x >= 0 else "#" for x in sid] for sid in self.slot_ids]
if self.intent_ids is not None:
if intent_map:
self.intent_ids = [[intent_map[x] for x in sid] if isinstance(sid, list) else intent_map[sid] for sid in
self.intent_ids]
def merge_output_data(self, output:"OutputData"):
"""merge another OutData object with slot and intent
Args:
output (OutputData): another OutputData object
"""
if output.slot_ids is not None:
self.slot_ids += output.slot_ids
if output.intent_ids is not None:
self.intent_ids += output.intent_ids
def save(self, path:str, original_dataset=None):
""" save all OutputData in the history
Args:
path (str): save dir path
original_dataset(Iterable): original dataset
"""
# with open(f"{path}/intent.jsonl", "w") as f:
# for x in self.intent_ids:
# f.write(json.dumps(x) + "\n")
with open(f"{path}/outputs.jsonl", "w") as f:
if original_dataset is not None:
for i, s, d in zip(self.intent_ids, self.slot_ids, original_dataset):
f.write(json.dumps({"pred_intent": i, "pred_slot": s, "text": d["text"], "golden_intent":d["intent"], "golden_slot":d["slot"]}) + "\n")
else:
for i, s in zip(self.intent_ids, self.slot_ids):
f.write(json.dumps({"pred_intent": i, "pred_slot": s}) + "\n")
class HiddenData():
"""Interactive data structure for all model components
"""
def __init__(self, intent_hidden, slot_hidden):
"""init hidden data structure
Args:
intent_hidden (Any): sentence-level or intent hidden state
slot_hidden (Any): token-level or slot hidden state
"""
self.intent_hidden = intent_hidden
self.slot_hidden = slot_hidden
self.inputs = None
self.embedding = None
def get_intent_hidden_state(self):
"""get intent hidden state
Returns:
Any: intent hidden state
"""
return self.intent_hidden
def get_slot_hidden_state(self):
"""get slot hidden state
Returns:
Any: slot hidden state
"""
return self.slot_hidden
def update_slot_hidden_state(self, hidden_state):
"""update slot hidden state
Args:
hidden_state (Any): slot hidden state to update
"""
self.slot_hidden = hidden_state
def update_intent_hidden_state(self, hidden_state):
"""update intent hidden state
Args:
hidden_state (Any): intent hidden state to update
"""
self.intent_hidden = hidden_state
def add_input(self, inputs: InputData or "HiddenData"):
"""add last model component input information to next model component
Args:
inputs (InputDataor or HiddenData): last model component input
"""
self.inputs = inputs
def add_embedding(self, embedding):
self.embedding = embedding
class ClassifierOutputData():
"""Classifier output data structure of all classifier components
"""
def __init__(self, classifier_output):
self.classifier_output = classifier_output
self.output_embedding = None
def remove_slot_ignore_index(inputs:InputData, outputs:OutputData, ignore_index=-100):
""" remove padding or extra token in input id and output id
Args:
inputs (InputData): input data with input id
outputs (OutputData): output data with decoded output id
ignore_index (int, optional): ignore_index in input_ids. Defaults to -100.
Returns:
InputData: input data removed padding or extra token
OutputData: output data removed padding or extra token
"""
for index, (inp_ss, out_ss) in enumerate(zip(inputs.slot, outputs.slot_ids)):
temp_inp = []
temp_out = []
for inp_s, out_s in zip(list(inp_ss), list(out_ss)):
if inp_s != ignore_index:
temp_inp.append(inp_s)
temp_out.append(out_s)
inputs.slot[index] = temp_inp
outputs.slot_ids[index] = temp_out
return inputs, outputs
def pack_sequence(inputs:Tensor, seq_len:Tensor or List) -> Tensor:
"""pack sequence data to packed data without padding.
Args:
inputs (Tensor): list(Tensor) of packed sequence inputs
seq_len (Tensor or List): list(Tensor) of sequence length
Returns:
Tensor: packed inputs
Examples:
inputs = [[x, y, z, PAD, PAD], [x, y, PAD, PAD, PAD]]
seq_len = [3,2]
return -> [x, y, z, x, y]
"""
output = []
for index, batch in enumerate(inputs):
output.append(batch[:seq_len[index]])
return torch.cat(output, dim=0)
def unpack_sequence(inputs:Tensor, seq_lens:Tensor or List, padding_value=0) -> Tensor:
"""unpack sequence data.
Args:
inputs (Tensor): list(Tensor) of packed sequence inputs
seq_lens (Tensor or List): list(Tensor) of sequence length
padding_value (int, optional): padding value. Defaults to 0.
Returns:
Tensor: unpacked inputs
Examples:
inputs = [x, y, z, x, y]
seq_len = [3,2]
return -> [[x, y, z, PAD, PAD], [x, y, PAD, PAD, PAD]]
"""
last_idx = 0
output = []
for _, seq_len in enumerate(seq_lens):
output.append(inputs[last_idx:last_idx + seq_len])
last_idx = last_idx + seq_len
return pad_sequence(output, batch_first=True, padding_value=padding_value)
def get_dict_with_key_prefix(input_dict: dict, prefix=""):
res = {}
for t in input_dict:
res[t + prefix] = input_dict[t]
return res
def download(url: str, fname: str):
"""download file from url to fname
Args:
url (str): remote server url path
fname (str): local path to save
"""
resp = requests.get(url, stream=True)
total = int(resp.headers.get('content-length', 0))
with open(fname, 'wb') as file, tqdm(
desc=fname,
total=total,
unit='iB',
unit_scale=True,
unit_divisor=1024,
) as bar:
for data in resp.iter_content(chunk_size=1024):
size = file.write(data)
bar.update(size)
def tar_gz_data(file_name:str):
"""use "tar.gz" format to compress data
Args:
file_name (str): file path to tar
"""
t = tarfile.open(f"{file_name}.tar.gz", "w:gz")
for root, dir, files in os.walk(f"{file_name}"):
print(root, dir, files)
for file in files:
fullpath = os.path.join(root, file)
t.add(fullpath)
t.close()
def untar(fname:str, dirs:str):
""" uncompress "tar.gz" file
Args:
fname (str): file path to untar
dirs (str): target dir path
"""
t = tarfile.open(fname)
t.extractall(path=dirs)
def unzip_file(zip_src:str, dst_dir:str):
""" uncompress "zip" file
Args:
fname (str): file path to unzip
dirs (str): target dir path
"""
r = zipfile.is_zipfile(zip_src)
if r:
if not os.path.exists(dst_dir):
os.mkdir(dst_dir)
fz = zipfile.ZipFile(zip_src, 'r')
for file in fz.namelist():
fz.extract(file, dst_dir)
else:
print('This is not zip')
def find_callable(target: str) -> Callable:
""" find callable function / class to instantiate
Args:
target (str): class/module path
Raises:
e: can not import module
Returns:
Callable: return function / class
"""
target_module_path, target_callable_path = target.rsplit(".", 1)
target_callable_paths = [target_callable_path]
target_module = None
while len(target_module_path):
try:
target_module = importlib.import_module(target_module_path)
break
except Exception as e:
raise e
target_callable = target_module
for attr in reversed(target_callable_paths):
target_callable = getattr(target_callable, attr)
return target_callable
def instantiate(config, target="_model_target_", partial="_model_partial_"):
""" instantiate object by config.
Modified from https://github.com/HIT-SCIR/ltp/blob/main/python/core/ltp_core/models/utils/instantiate.py.
Args:
config (Any): configuration
target (str, optional): key to assign the class to be instantiated. Defaults to "_model_target_".
partial (str, optional): key to judge object whether should be instantiated partially. Defaults to "_model_partial_".
Returns:
Any: instantiated object
"""
if isinstance(config, dict) and target in config:
target_path = config.get(target)
target_callable = find_callable(target_path)
is_partial = config.get(partial, False)
target_args = {
key: instantiate(value)
for key, value in config.items()
if key not in [target, partial]
}
if is_partial:
return functools.partial(target_callable, **target_args)
else:
return target_callable(**target_args)
elif isinstance(config, dict):
return {key: instantiate(value) for key, value in config.items()}
else:
return config
def load_yaml(file):
""" load data from yaml files.
Args:
file (str): yaml file path.
Returns:
Any: data
"""
with open(file, encoding="utf-8") as stream:
try:
return yaml.safe_load(stream)
except yaml.YAMLError as exc:
raise exc
def from_configured(configure_name_or_file:str, model_class:Callable, config_prefix="./config/", **input_config):
"""load module from pre-configured data
Args:
configure_name_or_file (str): config path -> {config_prefix}/{configure_name_or_file}.yaml
model_class (Callable): module class
config_prefix (str, optional): configuration root path. Defaults to "./config/".
Returns:
Any: instantiated object.
"""
if os.path.exists(configure_name_or_file):
configure_file=configure_name_or_file
else:
configure_file= os.path.join(config_prefix, configure_name_or_file+".yaml")
config = load_yaml(configure_file)
config.update(input_config)
return model_class(**config)
def save_json(file_path, obj):
with open(file_path, 'w', encoding="utf8") as fw:
fw.write(json.dumps(obj))
def load_json(file_path):
with open(file_path, 'r', encoding="utf8") as fw:
res =json.load(fw)
return res
def str2bool(v):
if isinstance(v, bool):
return v
if v.lower() in ('yes', 'true', 't', 'y', '1'):
return True
elif v.lower() in ('no', 'false', 'f', 'n', '0'):
return False
else:
raise argparse.ArgumentTypeError('Boolean value expected.')