Spaces:
Runtime error
Runtime error
File size: 15,857 Bytes
37b9e99 223340a 37b9e99 223340a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 |
import functools
import importlib
import json
import os
import tarfile
from typing import List, Tuple
import zipfile
from collections import Callable
from ruamel import yaml
import requests
import torch
from torch.nn.utils.rnn import pad_sequence
from tqdm import tqdm
from torch import Tensor
import argparse
class InputData():
"""input datas class
"""
def __init__(self, inputs: List =None):
"""init input datas class
if inputs is None:
this class can be used to save all InputData in the history by 'merge_input_data(X:InputData)'
else:
this class can be used for model input.
Args:
inputs (List, optional): inputs with [tokenized_data, slot, intent]. Defaults to None.
"""
if inputs == None:
self.slot = []
self.intent = []
self.input_ids = None
self.token_type_ids = None
self.attention_mask = None
self.seq_lens = None
else:
self.input_ids = inputs[0].input_ids
self.token_type_ids = None
if hasattr(inputs[0], "token_type_ids"):
self.token_type_ids = inputs[0].token_type_ids
self.attention_mask = inputs[0].attention_mask
if len(inputs)>=2:
self.slot = inputs[1]
if len(inputs)>=3:
self.intent = inputs[2]
self.seq_lens = self.attention_mask.sum(-1)
def get_inputs(self):
""" get tokenized_data
Returns:
dict: tokenized data
"""
res = {
"input_ids": self.input_ids,
"attention_mask": self.attention_mask
}
if self.token_type_ids is not None:
res["token_type_ids"] = self.token_type_ids
return res
def merge_input_data(self, inp: "InputData"):
"""merge another InputData object with slot and intent
Args:
inp (InputData): another InputData object
"""
self.slot += inp.slot
self.intent += inp.intent
def get_slot_mask(self, ignore_index:int)->Tensor:
"""get slot mask
Args:
ignore_index (int): ignore index used in slot padding
Returns:
Tensor: mask tensor
"""
mask = self.slot != ignore_index
mask[:, 0] = torch.ones_like(mask[:, 0]).to(self.slot.device)
return mask
def get_item(self, index, tokenizer=None, intent_map=None, slot_map=None, ignore_index = -100):
res = {"input_ids": self.input_ids[index]}
if tokenizer is not None:
res["tokens"] = [tokenizer.decode(x) for x in self.input_ids[index]]
if intent_map is not None:
intents = self.intent.tolist()
if isinstance(intents[index], list):
res["intent"] = [intent_map[int(x)] for x in intents[index]]
else:
res["intent"] = intent_map[intents[index]]
if slot_map is not None:
res["slot"] = [slot_map[x] if x != ignore_index else "#" for x in self.slot.tolist()[index]]
return res
class OutputData():
"""output data class
"""
def __init__(self, intent_ids=None, slot_ids=None):
"""init output data class
if intent_ids is None and slot_ids is None:
this class can be used to save all OutputData in the history by 'merge_output_data(X:OutputData)'
else:
this class can be used to model output management.
Args:
intent_ids (Any, optional): list(Tensor) of intent ids / logits / strings. Defaults to None.
slot_ids (Any, optional): list(Tensor) of slot ids / ids / strings. Defaults to None.
"""
if intent_ids is None and slot_ids is None:
self.intent_ids = []
self.slot_ids = []
else:
if isinstance(intent_ids, ClassifierOutputData):
self.intent_ids = intent_ids.classifier_output
else:
self.intent_ids = intent_ids
if isinstance(slot_ids, ClassifierOutputData):
self.slot_ids = slot_ids.classifier_output
else:
self.slot_ids = slot_ids
def map_output(self, slot_map=None, intent_map=None):
""" map intent or slot ids to intent or slot string.
Args:
slot_map (dict, optional): slot id-to-string map. Defaults to None.
intent_map (dict, optional): intent id-to-string map. Defaults to None.
"""
if self.slot_ids is not None:
if slot_map:
self.slot_ids = [[slot_map[x] if x >= 0 else "#" for x in sid] for sid in self.slot_ids]
if self.intent_ids is not None:
if intent_map:
self.intent_ids = [[intent_map[x] for x in sid] if isinstance(sid, list) else intent_map[sid] for sid in
self.intent_ids]
def merge_output_data(self, output:"OutputData"):
"""merge another OutData object with slot and intent
Args:
output (OutputData): another OutputData object
"""
if output.slot_ids is not None:
self.slot_ids += output.slot_ids
if output.intent_ids is not None:
self.intent_ids += output.intent_ids
def save(self, path:str, original_dataset=None):
""" save all OutputData in the history
Args:
path (str): save dir path
original_dataset(Iterable): original dataset
"""
# with open(f"{path}/intent.jsonl", "w") as f:
# for x in self.intent_ids:
# f.write(json.dumps(x) + "\n")
with open(f"{path}/outputs.jsonl", "w") as f:
if original_dataset is not None:
for i, s, d in zip(self.intent_ids, self.slot_ids, original_dataset):
f.write(json.dumps({"pred_intent": i, "pred_slot": s, "text": d["text"], "golden_intent":d["intent"], "golden_slot":d["slot"]}) + "\n")
else:
for i, s in zip(self.intent_ids, self.slot_ids):
f.write(json.dumps({"pred_intent": i, "pred_slot": s}) + "\n")
class HiddenData():
"""Interactive data structure for all model components
"""
def __init__(self, intent_hidden, slot_hidden):
"""init hidden data structure
Args:
intent_hidden (Any): sentence-level or intent hidden state
slot_hidden (Any): token-level or slot hidden state
"""
self.intent_hidden = intent_hidden
self.slot_hidden = slot_hidden
self.inputs = None
self.embedding = None
def get_intent_hidden_state(self):
"""get intent hidden state
Returns:
Any: intent hidden state
"""
return self.intent_hidden
def get_slot_hidden_state(self):
"""get slot hidden state
Returns:
Any: slot hidden state
"""
return self.slot_hidden
def update_slot_hidden_state(self, hidden_state):
"""update slot hidden state
Args:
hidden_state (Any): slot hidden state to update
"""
self.slot_hidden = hidden_state
def update_intent_hidden_state(self, hidden_state):
"""update intent hidden state
Args:
hidden_state (Any): intent hidden state to update
"""
self.intent_hidden = hidden_state
def add_input(self, inputs: InputData or "HiddenData"):
"""add last model component input information to next model component
Args:
inputs (InputDataor or HiddenData): last model component input
"""
self.inputs = inputs
def add_embedding(self, embedding):
self.embedding = embedding
class ClassifierOutputData():
"""Classifier output data structure of all classifier components
"""
def __init__(self, classifier_output):
self.classifier_output = classifier_output
self.output_embedding = None
def remove_slot_ignore_index(inputs:InputData, outputs:OutputData, ignore_index=-100):
""" remove padding or extra token in input id and output id
Args:
inputs (InputData): input data with input id
outputs (OutputData): output data with decoded output id
ignore_index (int, optional): ignore_index in input_ids. Defaults to -100.
Returns:
InputData: input data removed padding or extra token
OutputData: output data removed padding or extra token
"""
for index, (inp_ss, out_ss) in enumerate(zip(inputs.slot, outputs.slot_ids)):
temp_inp = []
temp_out = []
for inp_s, out_s in zip(list(inp_ss), list(out_ss)):
if inp_s != ignore_index:
temp_inp.append(inp_s)
temp_out.append(out_s)
inputs.slot[index] = temp_inp
outputs.slot_ids[index] = temp_out
return inputs, outputs
def pack_sequence(inputs:Tensor, seq_len:Tensor or List) -> Tensor:
"""pack sequence data to packed data without padding.
Args:
inputs (Tensor): list(Tensor) of packed sequence inputs
seq_len (Tensor or List): list(Tensor) of sequence length
Returns:
Tensor: packed inputs
Examples:
inputs = [[x, y, z, PAD, PAD], [x, y, PAD, PAD, PAD]]
seq_len = [3,2]
return -> [x, y, z, x, y]
"""
output = []
for index, batch in enumerate(inputs):
output.append(batch[:seq_len[index]])
return torch.cat(output, dim=0)
def unpack_sequence(inputs:Tensor, seq_lens:Tensor or List, padding_value=0) -> Tensor:
"""unpack sequence data.
Args:
inputs (Tensor): list(Tensor) of packed sequence inputs
seq_lens (Tensor or List): list(Tensor) of sequence length
padding_value (int, optional): padding value. Defaults to 0.
Returns:
Tensor: unpacked inputs
Examples:
inputs = [x, y, z, x, y]
seq_len = [3,2]
return -> [[x, y, z, PAD, PAD], [x, y, PAD, PAD, PAD]]
"""
last_idx = 0
output = []
for _, seq_len in enumerate(seq_lens):
output.append(inputs[last_idx:last_idx + seq_len])
last_idx = last_idx + seq_len
return pad_sequence(output, batch_first=True, padding_value=padding_value)
def get_dict_with_key_prefix(input_dict: dict, prefix=""):
res = {}
for t in input_dict:
res[t + prefix] = input_dict[t]
return res
def download(url: str, fname: str):
"""download file from url to fname
Args:
url (str): remote server url path
fname (str): local path to save
"""
resp = requests.get(url, stream=True)
total = int(resp.headers.get('content-length', 0))
with open(fname, 'wb') as file, tqdm(
desc=fname,
total=total,
unit='iB',
unit_scale=True,
unit_divisor=1024,
) as bar:
for data in resp.iter_content(chunk_size=1024):
size = file.write(data)
bar.update(size)
def tar_gz_data(file_name:str):
"""use "tar.gz" format to compress data
Args:
file_name (str): file path to tar
"""
t = tarfile.open(f"{file_name}.tar.gz", "w:gz")
for root, dir, files in os.walk(f"{file_name}"):
print(root, dir, files)
for file in files:
fullpath = os.path.join(root, file)
t.add(fullpath)
t.close()
def untar(fname:str, dirs:str):
""" uncompress "tar.gz" file
Args:
fname (str): file path to untar
dirs (str): target dir path
"""
t = tarfile.open(fname)
t.extractall(path=dirs)
def unzip_file(zip_src:str, dst_dir:str):
""" uncompress "zip" file
Args:
fname (str): file path to unzip
dirs (str): target dir path
"""
r = zipfile.is_zipfile(zip_src)
if r:
if not os.path.exists(dst_dir):
os.mkdir(dst_dir)
fz = zipfile.ZipFile(zip_src, 'r')
for file in fz.namelist():
fz.extract(file, dst_dir)
else:
print('This is not zip')
def find_callable(target: str) -> Callable:
""" find callable function / class to instantiate
Args:
target (str): class/module path
Raises:
e: can not import module
Returns:
Callable: return function / class
"""
target_module_path, target_callable_path = target.rsplit(".", 1)
target_callable_paths = [target_callable_path]
target_module = None
while len(target_module_path):
try:
target_module = importlib.import_module(target_module_path)
break
except Exception as e:
raise e
target_callable = target_module
for attr in reversed(target_callable_paths):
target_callable = getattr(target_callable, attr)
return target_callable
def instantiate(config, target="_model_target_", partial="_model_partial_"):
""" instantiate object by config.
Modified from https://github.com/HIT-SCIR/ltp/blob/main/python/core/ltp_core/models/utils/instantiate.py.
Args:
config (Any): configuration
target (str, optional): key to assign the class to be instantiated. Defaults to "_model_target_".
partial (str, optional): key to judge object whether should be instantiated partially. Defaults to "_model_partial_".
Returns:
Any: instantiated object
"""
if isinstance(config, dict) and target in config:
target_path = config.get(target)
target_callable = find_callable(target_path)
is_partial = config.get(partial, False)
target_args = {
key: instantiate(value)
for key, value in config.items()
if key not in [target, partial]
}
if is_partial:
return functools.partial(target_callable, **target_args)
else:
return target_callable(**target_args)
elif isinstance(config, dict):
return {key: instantiate(value) for key, value in config.items()}
else:
return config
def load_yaml(file):
""" load data from yaml files.
Args:
file (str): yaml file path.
Returns:
Any: data
"""
with open(file, encoding="utf-8") as stream:
try:
return yaml.safe_load(stream)
except yaml.YAMLError as exc:
raise exc
def from_configured(configure_name_or_file:str, model_class:Callable, config_prefix="./config/", **input_config):
"""load module from pre-configured data
Args:
configure_name_or_file (str): config path -> {config_prefix}/{configure_name_or_file}.yaml
model_class (Callable): module class
config_prefix (str, optional): configuration root path. Defaults to "./config/".
Returns:
Any: instantiated object.
"""
if os.path.exists(configure_name_or_file):
configure_file=configure_name_or_file
else:
configure_file= os.path.join(config_prefix, configure_name_or_file+".yaml")
config = load_yaml(configure_file)
config.update(input_config)
return model_class(**config)
def save_json(file_path, obj):
with open(file_path, 'w', encoding="utf8") as fw:
fw.write(json.dumps(obj))
def load_json(file_path):
with open(file_path, 'r', encoding="utf8") as fw:
res =json.load(fw)
return res
def str2bool(v):
if isinstance(v, bool):
return v
if v.lower() in ('yes', 'true', 't', 'y', '1'):
return True
elif v.lower() in ('no', 'false', 'f', 'n', '0'):
return False
else:
raise argparse.ArgumentTypeError('Boolean value expected.') |