|
import json |
|
import gradio as gr |
|
|
|
import os |
|
import sys |
|
import traceback |
|
import requests |
|
|
|
|
|
my_api_key = "" |
|
initial_prompt = "You are a helpful assistant." |
|
|
|
API_URL = "https://api.openai.com/v1/chat/completions" |
|
|
|
if my_api_key == "": |
|
my_api_key = os.environ.get('my_api_key') |
|
|
|
if my_api_key == "empty": |
|
print("Please give a api key!") |
|
sys.exit(1) |
|
|
|
|
|
def parse_text(text): |
|
lines = text.split("\n") |
|
count = 0 |
|
for i, line in enumerate(lines): |
|
if "```" in line: |
|
count += 1 |
|
items = line.split('`') |
|
if count % 2 == 1: |
|
lines[i] = f'<pre><code class="{items[-1]}">' |
|
else: |
|
lines[i] = f'</code></pre>' |
|
else: |
|
if i > 0: |
|
if count % 2 == 1: |
|
line = line.replace("&", "&") |
|
line = line.replace("\"", """) |
|
line = line.replace("\'", "'") |
|
line = line.replace("<", "<") |
|
line = line.replace(">", ">") |
|
line = line.replace(" ", " ") |
|
lines[i] = '<br/>'+line |
|
return "".join(lines) |
|
|
|
def predict(inputs, top_p, temperature, openai_api_key, chatbot=[], history=[], system_prompt=initial_prompt, retry=False, summary=False): |
|
|
|
headers = { |
|
"Content-Type": "application/json", |
|
"Authorization": f"Bearer {openai_api_key}" |
|
} |
|
|
|
chat_counter = len(history) // 2 |
|
|
|
print(f"chat_counter - {chat_counter}") |
|
|
|
messages = [compose_system(system_prompt)] |
|
if chat_counter: |
|
for data in chatbot: |
|
temp1 = {} |
|
temp1["role"] = "user" |
|
temp1["content"] = data[0] |
|
temp2 = {} |
|
temp2["role"] = "assistant" |
|
temp2["content"] = data[1] |
|
if temp1["content"] != "": |
|
messages.append(temp1) |
|
messages.append(temp2) |
|
else: |
|
messages[-1]['content'] = temp2['content'] |
|
if retry and chat_counter: |
|
messages.pop() |
|
elif summary and chat_counter: |
|
messages.append(compose_user( |
|
"请帮我总结一下上述对话的内容,实现减少字数的同时,保证对话的质量。在总结中不要加入这一句话。")) |
|
history = ["我们刚刚聊了什么?"] |
|
else: |
|
temp3 = {} |
|
temp3["role"] = "user" |
|
temp3["content"] = inputs |
|
messages.append(temp3) |
|
chat_counter += 1 |
|
|
|
payload = { |
|
"model": "gpt-3.5-turbo", |
|
"messages": messages, |
|
"temperature": temperature, |
|
"top_p": top_p, |
|
"n": 1, |
|
"stream": True, |
|
"presence_penalty": 0, |
|
"frequency_penalty": 0, |
|
} |
|
|
|
if not summary: |
|
history.append(inputs) |
|
print(f"payload is - {payload}") |
|
|
|
response = requests.post(API_URL, headers=headers, |
|
json=payload, stream=True) |
|
|
|
|
|
token_counter = 0 |
|
partial_words = "" |
|
|
|
counter = 0 |
|
chatbot.append((history[-1], "")) |
|
for chunk in response.iter_lines(): |
|
if counter == 0: |
|
counter += 1 |
|
continue |
|
counter += 1 |
|
|
|
if chunk: |
|
|
|
if len(json.loads(chunk.decode()[6:])['choices'][0]["delta"]) == 0: |
|
break |
|
|
|
partial_words = partial_words + \ |
|
json.loads(chunk.decode()[6:])[ |
|
'choices'][0]["delta"]["content"] |
|
if token_counter == 0: |
|
history.append(" " + partial_words) |
|
else: |
|
history[-1] = parse_text(partial_words) |
|
chatbot[-1] = (history[-2], history[-1]) |
|
|
|
token_counter += 1 |
|
|
|
yield chatbot, history |
|
|
|
|
|
|
|
def delete_last_conversation(chatbot, history): |
|
if chat_counter > 0: |
|
chat_counter -= 1 |
|
chatbot.pop() |
|
history.pop() |
|
history.pop() |
|
return chatbot, history |
|
|
|
def save_chat_history(filepath, system, history, chatbot): |
|
if filepath == "": |
|
return |
|
if not filepath.endswith(".json"): |
|
filepath += ".json" |
|
json_s = {"system": system, "history": history, "chatbot": chatbot} |
|
with open(filepath, "w") as f: |
|
json.dump(json_s, f) |
|
|
|
|
|
def load_chat_history(filename): |
|
with open(filename, "r") as f: |
|
json_s = json.load(f) |
|
return filename, json_s["system"], json_s["history"], json_s["chatbot"] |
|
|
|
|
|
def get_history_names(plain=False): |
|
|
|
files = [f for f in os.listdir() if f.endswith(".json")] |
|
if plain: |
|
return files |
|
else: |
|
return gr.Dropdown.update(choices=files) |
|
|
|
|
|
def reset_state(): |
|
return [], [] |
|
|
|
|
|
def compose_system(system_prompt): |
|
return {"role": "system", "content": system_prompt} |
|
|
|
|
|
def compose_user(user_input): |
|
return {"role": "user", "content": user_input} |
|
|
|
|
|
def reset_textbox(): |
|
return gr.update(value='') |
|
|
|
title = """<h1 align="center">川虎ChatGPT 🚀</h1>""" |
|
description = """<div align=center> |
|
|
|
由Bilibili [土川虎虎虎](https://space.bilibili.com/29125536) 开发 |
|
|
|
访问川虎ChatGPT的 [GitHub项目](https://github.com/GaiZhenbiao/ChuanhuChatGPT) 下载最新版脚本 |
|
|
|
此App使用 `gpt-3.5-turbo` 大语言模型 |
|
</div> |
|
""" |
|
with gr.Blocks() as demo: |
|
gr.HTML(title) |
|
keyTxt = gr.Textbox(show_label=True, placeholder=f"在这里输入你的OpenAI API-key...", |
|
value=my_api_key, label="API Key", type="password").style(container=True) |
|
chatbot = gr.Chatbot() |
|
history = gr.State([]) |
|
TRUECOMSTANT = gr.State(True) |
|
FALSECONSTANT = gr.State(False) |
|
topic = gr.State("未命名对话历史记录") |
|
|
|
with gr.Row(): |
|
with gr.Column(scale=12): |
|
txt = gr.Textbox(show_label=False, placeholder="在这里输入").style( |
|
container=False) |
|
with gr.Column(min_width=50, scale=1): |
|
submitBtn = gr.Button("🚀", variant="primary") |
|
with gr.Row(): |
|
emptyBtn = gr.Button("🧹 新的对话") |
|
retryBtn = gr.Button("🔄 重新生成") |
|
delLastBtn = gr.Button("🗑️ 删除上条对话") |
|
reduceTokenBtn = gr.Button("♻️ 总结对话") |
|
systemPromptTxt = gr.Textbox(show_label=True, placeholder=f"在这里输入System Prompt...", |
|
label="System prompt", value=initial_prompt).style(container=True) |
|
with gr.Accordion(label="保存/加载对话历史记录(在文本框中输入文件名,点击“保存对话”按钮,历史记录文件会被存储到Python文件旁边)", open=False): |
|
with gr.Column(): |
|
with gr.Row(): |
|
with gr.Column(scale=6): |
|
saveFileName = gr.Textbox( |
|
show_label=True, placeholder=f"在这里输入保存的文件名...", label="设置保存文件名", value="对话历史记录").style(container=True) |
|
with gr.Column(scale=1): |
|
saveBtn = gr.Button("💾 保存对话") |
|
with gr.Row(): |
|
with gr.Column(scale=6): |
|
uploadDropdown = gr.Dropdown(label="从列表中加载对话", choices=get_history_names(plain=True), multiselect=False) |
|
with gr.Column(scale=1): |
|
refreshBtn = gr.Button("🔄 刷新") |
|
uploadBtn = gr.Button("📂 读取对话") |
|
|
|
with gr.Accordion("参数", open=False): |
|
top_p = gr.Slider(minimum=-0, maximum=1.0, value=1.0, step=0.05, |
|
interactive=True, label="Top-p (nucleus sampling)",) |
|
temperature = gr.Slider(minimum=-0, maximum=5.0, value=1.0, |
|
step=0.1, interactive=True, label="Temperature",) |
|
|
|
|
|
gr.Markdown(description) |
|
|
|
|
|
txt.submit(predict, [txt, top_p, temperature, keyTxt, |
|
chatbot, history, systemPromptTxt], [chatbot, history]) |
|
txt.submit(reset_textbox, [], [txt]) |
|
submitBtn.click(predict, [txt, top_p, temperature, keyTxt, chatbot, |
|
history, systemPromptTxt], [chatbot, history], show_progress=True) |
|
submitBtn.click(reset_textbox, [], [txt]) |
|
emptyBtn.click(reset_state, outputs=[chatbot, history]) |
|
retryBtn.click(predict, [txt, top_p, temperature, keyTxt, chatbot, history, |
|
systemPromptTxt, TRUECOMSTANT], [chatbot, history], show_progress=True) |
|
delLastBtn.click(delete_last_conversation, [chatbot, history], [ |
|
chatbot, history], show_progress=True) |
|
reduceTokenBtn.click(predict, [txt, top_p, temperature, keyTxt, chatbot, history, |
|
systemPromptTxt, FALSECONSTANT, TRUECOMSTANT], [chatbot, history], show_progress=True) |
|
saveBtn.click(save_chat_history, [ |
|
saveFileName, systemPromptTxt, history, chatbot], None, show_progress=True) |
|
saveBtn.click(get_history_names, None, [uploadDropdown]) |
|
refreshBtn.click(get_history_names, None, [uploadDropdown]) |
|
uploadBtn.click(load_chat_history, [uploadDropdown], [saveFileName, systemPromptTxt, history, chatbot], show_progress=True) |
|
|
|
print("川虎的温馨提示:访问 http://localhost:7860 查看界面") |
|
|
|
demo.title = "川虎ChatGPT 🚀" |
|
demo.queue().launch(server_name="127.0.0.1", server_port=7860, share=False) |
|
|