File size: 10,484 Bytes
84509dd f71a765 84509dd f71a765 84509dd f71a765 84509dd f71a765 84509dd f71a765 84509dd f71a765 84509dd f71a765 84509dd f71a765 84509dd f71a765 84509dd f71a765 84509dd f71a765 84509dd f71a765 84509dd f71a765 84509dd f71a765 84509dd f71a765 84509dd f71a765 84509dd f71a765 84509dd f71a765 84509dd e4d2f60 84509dd e4d2f60 84509dd e4d2f60 f71a765 84509dd f71a765 84509dd f71a765 e4d2f60 f71a765 e4d2f60 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 |
import json
import gradio as gr
# import openai
import os
import sys
import traceback
import requests
# import markdown
my_api_key = "" # 在这里输入你的 API 密钥
initial_prompt = "You are a helpful assistant."
API_URL = "https://api.openai.com/v1/chat/completions"
if my_api_key == "":
my_api_key = os.environ.get('my_api_key')
if my_api_key == "empty":
print("Please give a api key!")
sys.exit(1)
def parse_text(text):
lines = text.split("\n")
count = 0
for i, line in enumerate(lines):
if "```" in line:
count += 1
items = line.split('`')
if count % 2 == 1:
lines[i] = f'<pre><code class="{items[-1]}">'
else:
lines[i] = f'</code></pre>'
else:
if i > 0:
if count % 2 == 1:
line = line.replace("&", "&")
line = line.replace("\"", """)
line = line.replace("\'", "'")
line = line.replace("<", "<")
line = line.replace(">", ">")
line = line.replace(" ", " ")
lines[i] = '<br/>'+line
return "".join(lines)
def predict(inputs, top_p, temperature, openai_api_key, chatbot=[], history=[], system_prompt=initial_prompt, retry=False, summary=False): # repetition_penalty, top_k
headers = {
"Content-Type": "application/json",
"Authorization": f"Bearer {openai_api_key}"
}
chat_counter = len(history) // 2
print(f"chat_counter - {chat_counter}")
messages = [compose_system(system_prompt)]
if chat_counter:
for data in chatbot:
temp1 = {}
temp1["role"] = "user"
temp1["content"] = data[0]
temp2 = {}
temp2["role"] = "assistant"
temp2["content"] = data[1]
if temp1["content"] != "":
messages.append(temp1)
messages.append(temp2)
else:
messages[-1]['content'] = temp2['content']
if retry and chat_counter:
messages.pop()
elif summary and chat_counter:
messages.append(compose_user(
"请帮我总结一下上述对话的内容,实现减少字数的同时,保证对话的质量。在总结中不要加入这一句话。"))
history = ["我们刚刚聊了什么?"]
else:
temp3 = {}
temp3["role"] = "user"
temp3["content"] = inputs
messages.append(temp3)
chat_counter += 1
# messages
payload = {
"model": "gpt-3.5-turbo",
"messages": messages, # [{"role": "user", "content": f"{inputs}"}],
"temperature": temperature, # 1.0,
"top_p": top_p, # 1.0,
"n": 1,
"stream": True,
"presence_penalty": 0,
"frequency_penalty": 0,
}
if not summary:
history.append(inputs)
print(f"payload is - {payload}")
# make a POST request to the API endpoint using the requests.post method, passing in stream=True
response = requests.post(API_URL, headers=headers,
json=payload, stream=True)
#response = requests.post(API_URL, headers=headers, json=payload, stream=True)
token_counter = 0
partial_words = ""
counter = 0
chatbot.append((history[-1], ""))
for chunk in response.iter_lines():
if counter == 0:
counter += 1
continue
counter += 1
# check whether each line is non-empty
if chunk:
# decode each line as response data is in bytes
if len(json.loads(chunk.decode()[6:])['choices'][0]["delta"]) == 0:
break
#print(json.loads(chunk.decode()[6:])['choices'][0]["delta"] ["content"])
partial_words = partial_words + \
json.loads(chunk.decode()[6:])[
'choices'][0]["delta"]["content"]
if token_counter == 0:
history.append(" " + partial_words)
else:
history[-1] = parse_text(partial_words)
chatbot[-1] = (history[-2], history[-1])
# chat = [(history[i], history[i + 1]) for i in range(0, len(history) - 1, 2) ] # convert to tuples of list
token_counter += 1
# resembles {chatbot: chat, state: history}
yield chatbot, history
def delete_last_conversation(chatbot, history):
if chat_counter > 0:
chat_counter -= 1
chatbot.pop()
history.pop()
history.pop()
return chatbot, history
def save_chat_history(filepath, system, history, chatbot):
if filepath == "":
return
if not filepath.endswith(".json"):
filepath += ".json"
json_s = {"system": system, "history": history, "chatbot": chatbot}
with open(filepath, "w") as f:
json.dump(json_s, f)
def load_chat_history(filename):
with open(filename, "r") as f:
json_s = json.load(f)
return filename, json_s["system"], json_s["history"], json_s["chatbot"]
def get_history_names(plain=False):
# find all json files in the current directory and return their names
files = [f for f in os.listdir() if f.endswith(".json")]
if plain:
return files
else:
return gr.Dropdown.update(choices=files)
def reset_state():
return [], []
def compose_system(system_prompt):
return {"role": "system", "content": system_prompt}
def compose_user(user_input):
return {"role": "user", "content": user_input}
def reset_textbox():
return gr.update(value='')
title = """<h1 align="center">川虎ChatGPT 🚀</h1>"""
description = """<div align=center>
由Bilibili [土川虎虎虎](https://space.bilibili.com/29125536) 开发
访问川虎ChatGPT的 [GitHub项目](https://github.com/GaiZhenbiao/ChuanhuChatGPT) 下载最新版脚本
此App使用 `gpt-3.5-turbo` 大语言模型
</div>
"""
with gr.Blocks() as demo:
gr.HTML(title)
keyTxt = gr.Textbox(show_label=True, placeholder=f"在这里输入你的OpenAI API-key...",
value=my_api_key, label="API Key", type="password").style(container=True)
chatbot = gr.Chatbot() # .style(color_map=("#1D51EE", "#585A5B"))
history = gr.State([])
TRUECOMSTANT = gr.State(True)
FALSECONSTANT = gr.State(False)
topic = gr.State("未命名对话历史记录")
with gr.Row():
with gr.Column(scale=12):
txt = gr.Textbox(show_label=False, placeholder="在这里输入").style(
container=False)
with gr.Column(min_width=50, scale=1):
submitBtn = gr.Button("🚀", variant="primary")
with gr.Row():
emptyBtn = gr.Button("🧹 新的对话")
retryBtn = gr.Button("🔄 重新生成")
delLastBtn = gr.Button("🗑️ 删除上条对话")
reduceTokenBtn = gr.Button("♻️ 总结对话")
systemPromptTxt = gr.Textbox(show_label=True, placeholder=f"在这里输入System Prompt...",
label="System prompt", value=initial_prompt).style(container=True)
with gr.Accordion(label="保存/加载对话历史记录(在文本框中输入文件名,点击“保存对话”按钮,历史记录文件会被存储到Python文件旁边)", open=False):
with gr.Column():
with gr.Row():
with gr.Column(scale=6):
saveFileName = gr.Textbox(
show_label=True, placeholder=f"在这里输入保存的文件名...", label="设置保存文件名", value="对话历史记录").style(container=True)
with gr.Column(scale=1):
saveBtn = gr.Button("💾 保存对话")
with gr.Row():
with gr.Column(scale=6):
uploadDropdown = gr.Dropdown(label="从列表中加载对话", choices=get_history_names(plain=True), multiselect=False)
with gr.Column(scale=1):
refreshBtn = gr.Button("🔄 刷新")
uploadBtn = gr.Button("📂 读取对话")
#inputs, top_p, temperature, top_k, repetition_penalty
with gr.Accordion("参数", open=False):
top_p = gr.Slider(minimum=-0, maximum=1.0, value=1.0, step=0.05,
interactive=True, label="Top-p (nucleus sampling)",)
temperature = gr.Slider(minimum=-0, maximum=5.0, value=1.0,
step=0.1, interactive=True, label="Temperature",)
#top_k = gr.Slider( minimum=1, maximum=50, value=4, step=1, interactive=True, label="Top-k",)
#repetition_penalty = gr.Slider( minimum=0.1, maximum=3.0, value=1.03, step=0.01, interactive=True, label="Repetition Penalty", )
gr.Markdown(description)
txt.submit(predict, [txt, top_p, temperature, keyTxt,
chatbot, history, systemPromptTxt], [chatbot, history])
txt.submit(reset_textbox, [], [txt])
submitBtn.click(predict, [txt, top_p, temperature, keyTxt, chatbot,
history, systemPromptTxt], [chatbot, history], show_progress=True)
submitBtn.click(reset_textbox, [], [txt])
emptyBtn.click(reset_state, outputs=[chatbot, history])
retryBtn.click(predict, [txt, top_p, temperature, keyTxt, chatbot, history,
systemPromptTxt, TRUECOMSTANT], [chatbot, history], show_progress=True)
delLastBtn.click(delete_last_conversation, [chatbot, history], [
chatbot, history], show_progress=True)
reduceTokenBtn.click(predict, [txt, top_p, temperature, keyTxt, chatbot, history,
systemPromptTxt, FALSECONSTANT, TRUECOMSTANT], [chatbot, history], show_progress=True)
saveBtn.click(save_chat_history, [
saveFileName, systemPromptTxt, history, chatbot], None, show_progress=True)
saveBtn.click(get_history_names, None, [uploadDropdown])
refreshBtn.click(get_history_names, None, [uploadDropdown])
uploadBtn.click(load_chat_history, [uploadDropdown], [saveFileName, systemPromptTxt, history, chatbot], show_progress=True)
print("川虎的温馨提示:访问 http://localhost:7860 查看界面")
# 默认开启本地服务器,默认可以直接从IP访问,默认不创建公开分享链接
demo.title = "川虎ChatGPT 🚀"
demo.queue().launch(server_name="127.0.0.1", server_port=7860, share=False) # 改为 share=True 可以创建公开分享链接
|