Spaces:
Sleeping
Sleeping
import time | |
from typing import Any, Dict, List, Literal, Optional, Tuple, Union | |
import numpy as np | |
import PIL.Image | |
import torch | |
import torch.nn.functional as F | |
from diffusers import LCMScheduler | |
from diffusers.image_processor import VaeImageProcessor | |
from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_img2img import ( | |
retrieve_latents, | |
) | |
from einops import rearrange | |
from live2diff.image_filter import SimilarImageFilter | |
from .animatediff.pipeline import AnimationDepthPipeline | |
WARMUP_FRAMES = 8 | |
WINDOW_SIZE = 16 | |
class StreamAnimateDiffusionDepth: | |
def __init__( | |
self, | |
pipe: AnimationDepthPipeline, | |
num_inference_steps: int, | |
t_index_list: Optional[List[int]] = None, | |
strength: Optional[float] = None, | |
torch_dtype: torch.dtype = torch.float16, | |
width: int = 512, | |
height: int = 512, | |
do_add_noise: bool = True, | |
use_denoising_batch: bool = True, | |
frame_buffer_size: int = 1, | |
clip_skip: int = 1, | |
cfg_type: Literal["none", "full", "self", "initialize"] = "none", | |
) -> None: | |
self.device = pipe.device | |
self.dtype = torch_dtype | |
self.generator = None | |
self.height = height | |
self.width = width | |
self.pipe = pipe | |
self.latent_height = int(height // pipe.vae_scale_factor) | |
self.latent_width = int(width // pipe.vae_scale_factor) | |
self.clip_skip = clip_skip | |
self.scheduler = LCMScheduler.from_config(self.pipe.scheduler.config) | |
self.scheduler.set_timesteps(num_inference_steps, self.device) | |
if strength is not None: | |
t_index_list, timesteps = self.get_timesteps(num_inference_steps, strength, self.device) | |
print( | |
f"Generate t_index_list: {t_index_list} via " | |
f"num_inference_steps: {num_inference_steps}, strength: {strength}" | |
) | |
self.timesteps = timesteps | |
else: | |
print( | |
f"t_index_list is passed: {t_index_list}. " | |
f"Number Inference Steps: {num_inference_steps}, " | |
f"equivalents to strength {1 - t_index_list[0] / num_inference_steps}." | |
) | |
self.timesteps = self.scheduler.timesteps.to(self.device) | |
self.frame_bff_size = frame_buffer_size | |
self.denoising_steps_num = len(t_index_list) | |
self.strength = strength | |
assert cfg_type == "none", f'cfg_type must be "none" for now, but got {cfg_type}.' | |
self.cfg_type = cfg_type | |
if use_denoising_batch: | |
self.batch_size = self.denoising_steps_num * frame_buffer_size | |
if self.cfg_type == "initialize": | |
self.trt_unet_batch_size = (self.denoising_steps_num + 1) * self.frame_bff_size | |
elif self.cfg_type == "full": | |
self.trt_unet_batch_size = 2 * self.denoising_steps_num * self.frame_bff_size | |
else: | |
self.trt_unet_batch_size = self.denoising_steps_num * frame_buffer_size | |
else: | |
self.trt_unet_batch_size = self.frame_bff_size | |
self.batch_size = frame_buffer_size | |
self.t_list = t_index_list | |
self.do_add_noise = do_add_noise | |
self.use_denoising_batch = use_denoising_batch | |
self.similar_image_filter = False | |
self.similar_filter = SimilarImageFilter() | |
self.prev_image_result = None | |
self.image_processor = VaeImageProcessor(pipe.vae_scale_factor) | |
self.text_encoder = pipe.text_encoder | |
self.unet = pipe.unet | |
self.vae = pipe.vae | |
self.depth_detector = pipe.depth_model | |
self.inference_time_ema = 0 | |
self.depth_time_ema = 0 | |
self.inference_time_list = [] | |
self.depth_time_list = [] | |
self.mask_shift = 1 | |
self.is_tensorrt = False | |
def prepare_cache(self, height, width, denoising_steps_num): | |
kv_cache_list = self.pipe.prepare_cache( | |
height=height, | |
width=width, | |
denoising_steps_num=denoising_steps_num, | |
) | |
self.pipe.prepare_warmup_unet(height=height, width=width, unet=self.unet_warmup) | |
self.kv_cache_list = kv_cache_list | |
def get_timesteps(self, num_inference_steps, strength, device): | |
# get the original timestep using init_timestep | |
init_timestep = min(int(num_inference_steps * strength), num_inference_steps) | |
t_start = max(num_inference_steps - init_timestep, 0) | |
timesteps = self.scheduler.timesteps[t_start:].to(device) | |
t_index = list(range(len(timesteps))) | |
return t_index, timesteps | |
def load_lora( | |
self, | |
pretrained_lora_model_name_or_path_or_dict: Union[str, Dict[str, torch.Tensor]], | |
adapter_name: Optional[Any] = None, | |
**kwargs, | |
) -> None: | |
self.pipe.load_lora_weights( | |
pretrained_lora_model_name_or_path_or_dict, | |
adapter_name, | |
**kwargs, | |
) | |
def fuse_lora( | |
self, | |
fuse_unet: bool = True, | |
fuse_text_encoder: bool = True, | |
lora_scale: float = 1.0, | |
safe_fusing: bool = False, | |
) -> None: | |
self.pipe.fuse_lora( | |
fuse_unet=fuse_unet, | |
fuse_text_encoder=fuse_text_encoder, | |
lora_scale=lora_scale, | |
safe_fusing=safe_fusing, | |
) | |
def enable_similar_image_filter( | |
self, | |
threshold: float = 0.98, | |
max_skip_frame: float = 10, | |
) -> None: | |
self.similar_image_filter = True | |
self.similar_filter.set_threshold(threshold) | |
self.similar_filter.set_max_skip_frame(max_skip_frame) | |
def disable_similar_image_filter(self) -> None: | |
self.similar_image_filter = False | |
def prepare( | |
self, | |
warmup_frames: torch.Tensor, | |
prompt: str, | |
negative_prompt: str = "", | |
guidance_scale: float = 1.2, | |
delta: float = 1.0, | |
generator: Optional[torch.Generator] = None, | |
seed: int = 2, | |
) -> None: | |
""" | |
Forward warm-up frames and fill the buffer | |
images: [warmup_size, 3, h, w] in [0, 1] | |
""" | |
if generator is None: | |
self.generator = torch.Generator(device=self.device) | |
self.generator.manual_seed(seed) | |
else: | |
self.generator = generator | |
# initialize x_t_latent (it can be any random tensor) | |
if self.denoising_steps_num > 1: | |
self.x_t_latent_buffer = torch.zeros( | |
( | |
(self.denoising_steps_num - 1) * self.frame_bff_size, | |
4, | |
1, # for video | |
self.latent_height, | |
self.latent_width, | |
), | |
dtype=self.dtype, | |
device=self.device, | |
) | |
self.depth_latent_buffer = torch.zeros_like(self.x_t_latent_buffer) | |
else: | |
self.x_t_latent_buffer = None | |
self.depth_latent_buffer = None | |
self.attn_bias, self.pe_idx, self.update_idx = self.initialize_attn_bias_pe_and_update_idx() | |
if self.cfg_type == "none": | |
self.guidance_scale = 1.0 | |
else: | |
self.guidance_scale = guidance_scale | |
self.delta = delta | |
do_classifier_free_guidance = False | |
if self.guidance_scale > 1.0: | |
do_classifier_free_guidance = True | |
encoder_output = self.pipe._encode_prompt( | |
prompt=prompt, | |
device=self.device, | |
num_videos_per_prompt=1, | |
do_classifier_free_guidance=do_classifier_free_guidance, | |
negative_prompt=negative_prompt, | |
clip_skip=self.clip_skip, | |
) | |
self.prompt_embeds = encoder_output[0].repeat(self.batch_size, 1, 1) | |
if self.use_denoising_batch and self.cfg_type == "full": | |
uncond_prompt_embeds = encoder_output[1].repeat(self.batch_size, 1, 1) | |
elif self.cfg_type == "initialize": | |
uncond_prompt_embeds = encoder_output[1].repeat(self.frame_bff_size, 1, 1) | |
if self.guidance_scale > 1.0 and (self.cfg_type == "initialize" or self.cfg_type == "full"): | |
self.prompt_embeds = torch.cat([uncond_prompt_embeds, self.prompt_embeds], dim=0) | |
# make sub timesteps list based on the indices in the t_list list and the values in the timesteps list | |
self.sub_timesteps = [] | |
for t in self.t_list: | |
self.sub_timesteps.append(self.timesteps[t]) | |
sub_timesteps_tensor = torch.tensor(self.sub_timesteps, dtype=torch.long, device=self.device) | |
self.sub_timesteps_tensor = torch.repeat_interleave( | |
sub_timesteps_tensor, | |
repeats=self.frame_bff_size if self.use_denoising_batch else 1, | |
dim=0, | |
) | |
self.init_noise = torch.randn( | |
(self.batch_size, 4, WARMUP_FRAMES, self.latent_height, self.latent_width), | |
generator=generator, | |
).to(device=self.device, dtype=self.dtype) | |
self.stock_noise = torch.zeros_like(self.init_noise) | |
c_skip_list = [] | |
c_out_list = [] | |
for timestep in self.sub_timesteps: | |
c_skip, c_out = self.scheduler.get_scalings_for_boundary_condition_discrete(timestep) | |
c_skip_list.append(c_skip) | |
c_out_list.append(c_out) | |
self.c_skip = ( | |
torch.stack(c_skip_list).view(len(self.t_list), 1, 1, 1, 1).to(dtype=self.dtype, device=self.device) | |
) | |
self.c_out = ( | |
torch.stack(c_out_list).view(len(self.t_list), 1, 1, 1, 1).to(dtype=self.dtype, device=self.device) | |
) | |
# print(self.c_skip) | |
alpha_prod_t_sqrt_list = [] | |
beta_prod_t_sqrt_list = [] | |
for timestep in self.sub_timesteps: | |
alpha_prod_t_sqrt = self.scheduler.alphas_cumprod[timestep].sqrt() | |
beta_prod_t_sqrt = (1 - self.scheduler.alphas_cumprod[timestep]).sqrt() | |
alpha_prod_t_sqrt_list.append(alpha_prod_t_sqrt) | |
beta_prod_t_sqrt_list.append(beta_prod_t_sqrt) | |
alpha_prod_t_sqrt = ( | |
torch.stack(alpha_prod_t_sqrt_list) | |
.view(len(self.t_list), 1, 1, 1, 1) | |
.to(dtype=self.dtype, device=self.device) | |
) | |
beta_prod_t_sqrt = ( | |
torch.stack(beta_prod_t_sqrt_list) | |
.view(len(self.t_list), 1, 1, 1, 1) | |
.to(dtype=self.dtype, device=self.device) | |
) | |
self.alpha_prod_t_sqrt = torch.repeat_interleave( | |
alpha_prod_t_sqrt, | |
repeats=self.frame_bff_size if self.use_denoising_batch else 1, | |
dim=0, | |
) | |
self.beta_prod_t_sqrt = torch.repeat_interleave( | |
beta_prod_t_sqrt, | |
repeats=self.frame_bff_size if self.use_denoising_batch else 1, | |
dim=0, | |
) | |
# do warmup | |
# 1. encode images | |
warmup_x_list = [] | |
for f in warmup_frames: | |
x = self.image_processor.preprocess(f, self.height, self.width) | |
warmup_x_list.append(x.to(device=self.device, dtype=self.dtype)) | |
warmup_x = torch.cat(warmup_x_list, dim=0) # [warmup_size, c, h, w] | |
warmup_x_t = self.encode_image(warmup_x) | |
x_t_latent = rearrange(warmup_x_t, "f c h w -> c f h w")[None, ...] | |
depth_latent = self.encode_depth(warmup_x) | |
depth_latent = rearrange(depth_latent, "f c h w -> c f h w")[None, ...] | |
# 2. run warmup denoising | |
self.unet_warmup = self.unet_warmup.to(device="cuda", dtype=self.dtype) | |
warmup_prompt = self.prompt_embeds[0:1] | |
for idx, t in enumerate(self.sub_timesteps_tensor): | |
t = t.view(1).repeat(x_t_latent.shape[0]) | |
output_t = self.unet_warmup( | |
x_t_latent, | |
t, | |
temporal_attention_mask=None, | |
depth_sample=depth_latent, | |
encoder_hidden_states=warmup_prompt, | |
kv_cache=[cache[idx] for cache in self.kv_cache_list], | |
return_dict=True, | |
) | |
model_pred = output_t["sample"] | |
x_0_pred = self.scheduler_step_batch(model_pred, x_t_latent, idx) | |
if idx < len(self.sub_timesteps_tensor) - 1: | |
# x_t_latent = self.alpha_prod_t_sqrt[idx + 1] * x_0_pred | |
x_t_latent = self.alpha_prod_t_sqrt[idx + 1] * x_0_pred + self.beta_prod_t_sqrt[ | |
idx + 1 | |
] * torch.randn_like(x_0_pred, device=self.device, dtype=self.dtype) | |
self.unet_warmup = self.unet_warmup.to(device="cpu") | |
x_0_pred = rearrange(x_0_pred, "b c f h w -> b f c h w")[0] # [f, c, h, w] | |
denoisied_frame = self.decode_image(x_0_pred) | |
self.warmup_engine() | |
return denoisied_frame | |
def warmup_engine(self): | |
"""Warmup tensorrt engine.""" | |
if not self.is_tensorrt: | |
return | |
print("Warmup TensorRT engine.") | |
pseudo_latent = self.init_noise[:, :, 0:1, ...] | |
for _ in range(self.batch_size): | |
self.unet( | |
pseudo_latent, | |
self.sub_timesteps_tensor, | |
depth_sample=pseudo_latent, | |
encoder_hidden_states=self.prompt_embeds, | |
temporal_attention_mask=self.attn_bias, | |
kv_cache=self.kv_cache_list, | |
pe_idx=self.pe_idx, | |
update_idx=self.update_idx, | |
return_dict=True, | |
) | |
print("Warmup TensorRT engine finished.") | |
def update_prompt(self, prompt: str) -> None: | |
encoder_output = self.pipe._encode_prompt( | |
prompt=prompt, | |
device=self.device, | |
num_images_per_prompt=1, | |
do_classifier_free_guidance=False, | |
) | |
self.prompt_embeds = encoder_output[0].repeat(self.batch_size, 1, 1) | |
def add_noise( | |
self, | |
original_samples: torch.Tensor, | |
noise: torch.Tensor, | |
t_index: int, | |
) -> torch.Tensor: | |
noisy_samples = self.alpha_prod_t_sqrt[t_index] * original_samples + self.beta_prod_t_sqrt[t_index] * noise | |
return noisy_samples | |
def scheduler_step_batch( | |
self, | |
model_pred_batch: torch.Tensor, | |
x_t_latent_batch: torch.Tensor, | |
idx: Optional[int] = None, | |
) -> torch.Tensor: | |
# TODO: use t_list to select beta_prod_t_sqrt | |
if idx is None: | |
F_theta = (x_t_latent_batch - self.beta_prod_t_sqrt * model_pred_batch) / self.alpha_prod_t_sqrt | |
denoised_batch = self.c_out * F_theta + self.c_skip * x_t_latent_batch | |
else: | |
F_theta = (x_t_latent_batch - self.beta_prod_t_sqrt[idx] * model_pred_batch) / self.alpha_prod_t_sqrt[idx] | |
denoised_batch = self.c_out[idx] * F_theta + self.c_skip[idx] * x_t_latent_batch | |
return denoised_batch | |
def initialize_attn_bias_pe_and_update_idx(self): | |
attn_mask = torch.zeros((self.denoising_steps_num, WINDOW_SIZE), dtype=torch.bool, device=self.device) | |
attn_mask[:, :WARMUP_FRAMES] = True | |
attn_mask[0, WARMUP_FRAMES] = True | |
attn_bias = torch.zeros_like(attn_mask, dtype=self.dtype) | |
attn_bias.masked_fill_(attn_mask.logical_not(), float("-inf")) | |
pe_idx = torch.arange(WINDOW_SIZE).unsqueeze(0).repeat(self.denoising_steps_num, 1).cuda() | |
update_idx = torch.ones(self.denoising_steps_num, dtype=torch.int64, device=self.device) * WARMUP_FRAMES | |
update_idx[1] = WARMUP_FRAMES + 1 | |
return attn_bias, pe_idx, update_idx | |
def update_attn_bias(self, attn_bias, pe_idx, update_idx): | |
""" | |
attn_bias: (timesteps, prev_len), init value: [[0, 0, 0, inf], [0, 0, inf, inf]] | |
pe_idx: (timesteps, prev_len), init value: [[0, 1, 2, 3], [0, 1, 2, 3]] | |
update_idx: (timesteps, ), init value: [2, 1] | |
""" | |
for idx in range(self.denoising_steps_num): | |
# update pe_idx and update_idx based on attn_bias from last iteration | |
if torch.isinf(attn_bias[idx]).any(): | |
# some position not filled, do not change pe | |
# some position not filled, fill the last position | |
update_idx[idx] = (attn_bias[idx] == 0).sum() | |
else: | |
# all position are filled, roll pe | |
pe_idx[idx, WARMUP_FRAMES:] = pe_idx[idx, WARMUP_FRAMES:].roll(shifts=1, dims=0) | |
# all position are filled, fill the position with largest PE | |
update_idx[idx] = pe_idx[idx].argmax() | |
num_unmask = (attn_bias[idx] == 0).sum() | |
attn_bias[idx, : min(num_unmask + 1, WINDOW_SIZE)] = 0 | |
return attn_bias, pe_idx, update_idx | |
def unet_step( | |
self, | |
x_t_latent: torch.Tensor, | |
depth_latent: torch.Tensor, | |
t_list: Union[torch.Tensor, list[int]], | |
idx: Optional[int] = None, | |
) -> Tuple[torch.Tensor, torch.Tensor]: | |
if self.guidance_scale > 1.0 and (self.cfg_type == "initialize"): | |
x_t_latent_plus_uc = torch.concat([x_t_latent[0:1], x_t_latent], dim=0) | |
t_list = torch.concat([t_list[0:1], t_list], dim=0) | |
elif self.guidance_scale > 1.0 and (self.cfg_type == "full"): | |
x_t_latent_plus_uc = torch.concat([x_t_latent, x_t_latent], dim=0) | |
t_list = torch.concat([t_list, t_list], dim=0) | |
else: | |
x_t_latent_plus_uc = x_t_latent | |
output = self.unet( | |
x_t_latent_plus_uc, | |
t_list, | |
depth_sample=depth_latent, | |
encoder_hidden_states=self.prompt_embeds, | |
temporal_attention_mask=self.attn_bias, | |
kv_cache=self.kv_cache_list, | |
pe_idx=self.pe_idx, | |
update_idx=self.update_idx, | |
return_dict=True, | |
) | |
model_pred = output["sample"] | |
kv_cache_list = output["kv_cache"] | |
self.kv_cache_list = kv_cache_list | |
if self.guidance_scale > 1.0 and (self.cfg_type == "initialize"): | |
noise_pred_text = model_pred[1:] | |
self.stock_noise = torch.concat( | |
[model_pred[0:1], self.stock_noise[1:]], dim=0 | |
) # ここコメントアウトでself out cfg | |
elif self.guidance_scale > 1.0 and (self.cfg_type == "full"): | |
noise_pred_uncond, noise_pred_text = model_pred.chunk(2) | |
else: | |
noise_pred_text = model_pred | |
if self.guidance_scale > 1.0 and (self.cfg_type == "self" or self.cfg_type == "initialize"): | |
noise_pred_uncond = self.stock_noise * self.delta | |
if self.guidance_scale > 1.0 and self.cfg_type != "none": | |
model_pred = noise_pred_uncond + self.guidance_scale * (noise_pred_text - noise_pred_uncond) | |
else: | |
model_pred = noise_pred_text | |
# compute the previous noisy sample x_t -> x_t-1 | |
if self.use_denoising_batch: | |
denoised_batch = self.scheduler_step_batch(model_pred, x_t_latent, idx) | |
if self.cfg_type == "self" or self.cfg_type == "initialize": | |
scaled_noise = self.beta_prod_t_sqrt * self.stock_noise | |
delta_x = self.scheduler_step_batch(model_pred, scaled_noise, idx) | |
alpha_next = torch.concat( | |
[ | |
self.alpha_prod_t_sqrt[1:], | |
torch.ones_like(self.alpha_prod_t_sqrt[0:1]), | |
], | |
dim=0, | |
) | |
delta_x = alpha_next * delta_x | |
beta_next = torch.concat( | |
[ | |
self.beta_prod_t_sqrt[1:], | |
torch.ones_like(self.beta_prod_t_sqrt[0:1]), | |
], | |
dim=0, | |
) | |
delta_x = delta_x / beta_next | |
init_noise = torch.concat([self.init_noise[1:], self.init_noise[0:1]], dim=0) | |
self.stock_noise = init_noise + delta_x | |
else: | |
denoised_batch = self.scheduler_step_batch(model_pred, x_t_latent, idx) | |
return denoised_batch, model_pred | |
def encode_image(self, image_tensors: torch.Tensor) -> torch.Tensor: | |
""" | |
image_tensors: [f, c, h, w] | |
""" | |
# num_frames = image_tensors.shape[2] | |
image_tensors = image_tensors.to( | |
device=self.device, | |
dtype=self.vae.dtype, | |
) | |
img_latent = retrieve_latents(self.vae.encode(image_tensors), self.generator) | |
img_latent = img_latent * self.vae.config.scaling_factor | |
noise = torch.randn( | |
img_latent.shape, | |
device=img_latent.device, | |
dtype=img_latent.dtype, | |
generator=self.generator, | |
) | |
x_t_latent = self.add_noise(img_latent, noise, 0) | |
return x_t_latent | |
def decode_image(self, x_0_pred_out: torch.Tensor) -> torch.Tensor: | |
""" | |
x_0_pred: [f, c, h, w] | |
""" | |
output_latent = self.vae.decode(x_0_pred_out / self.vae.config.scaling_factor, return_dict=False)[0] | |
return output_latent.clip(-1, 1) | |
def encode_depth(self, image_tensors: torch.Tensor) -> Tuple[torch.Tensor]: | |
""" | |
image_tensor: [f, c, h, w], [-1, 1] | |
""" | |
image_tensors = image_tensors.to( | |
device=self.device, | |
dtype=self.depth_detector.dtype, | |
) | |
# depth_map = self.depth_detector(image_tensors) | |
# depth_map_norm = (depth_map - depth_map.min()) / (depth_map.max() - depth_map.min()) | |
# depth_map_norm = depth_map_norm[:, None].repeat(1, 3, 1, 1) * 2 - 1 | |
# depth_latent = retrieve_latents(self.vae.encode(depth_map_norm.to(dtype=self.vae.dtype)), self.generator) | |
# depth_latent = depth_latent * self.vae.config.scaling_factor | |
# return depth_latent | |
# preprocess | |
h, w = image_tensors.shape[2], image_tensors.shape[3] | |
images_input = F.interpolate(image_tensors, (384, 384), mode="bilinear", align_corners=False) | |
# forward | |
depth_map = self.depth_detector(images_input) | |
# postprocess | |
depth_map_norm = (depth_map - depth_map.min()) / (depth_map.max() - depth_map.min()) | |
depth_map_norm = depth_map_norm[:, None].repeat(1, 3, 1, 1) * 2 - 1 | |
depth_map_norm = F.interpolate(depth_map_norm, (h, w), mode="bilinear", align_corners=False) | |
# encode | |
depth_latent = retrieve_latents(self.vae.encode(depth_map_norm.to(dtype=self.vae.dtype)), self.generator) | |
depth_latent = depth_latent * self.vae.config.scaling_factor | |
return depth_latent | |
def predict_x0_batch(self, x_t_latent: torch.Tensor, depth_latent: torch.Tensor) -> torch.Tensor: | |
prev_latent_batch = self.x_t_latent_buffer | |
prev_depth_latent_batch = self.depth_latent_buffer | |
if self.use_denoising_batch: | |
t_list = self.sub_timesteps_tensor | |
if self.denoising_steps_num > 1: | |
x_t_latent = torch.cat((x_t_latent, prev_latent_batch), dim=0) | |
depth_latent = torch.cat((depth_latent, prev_depth_latent_batch), dim=0) | |
self.stock_noise = torch.cat((self.init_noise[0:1], self.stock_noise[:-1]), dim=0) | |
x_0_pred_batch, model_pred = self.unet_step(x_t_latent, depth_latent, t_list) | |
self.attn_bias, self.pe_idx, self.update_idx = self.update_attn_bias( | |
self.attn_bias, self.pe_idx, self.update_idx | |
) | |
if self.denoising_steps_num > 1: | |
x_0_pred_out = x_0_pred_batch[-1].unsqueeze(0) | |
if self.do_add_noise: | |
# self.x_t_latent_buffer = ( | |
# self.alpha_prod_t_sqrt[1:] * x_0_pred_batch[:-1] | |
# + self.beta_prod_t_sqrt[1:] * self.init_noise[1:] | |
# ) | |
self.x_t_latent_buffer = self.alpha_prod_t_sqrt[1:] * x_0_pred_batch[:-1] + self.beta_prod_t_sqrt[ | |
1: | |
] * torch.randn_like(x_0_pred_batch[:-1]) | |
else: | |
self.x_t_latent_buffer = self.alpha_prod_t_sqrt[1:] * x_0_pred_batch[:-1] | |
self.depth_latent_buffer = depth_latent[:-1] | |
else: | |
x_0_pred_out = x_0_pred_batch | |
self.x_t_latent_buffer = None | |
else: | |
self.init_noise = x_t_latent | |
for idx, t in enumerate(self.sub_timesteps_tensor): | |
t = t.view( | |
1, | |
).repeat( | |
self.frame_bff_size, | |
) | |
x_0_pred, model_pred = self.unet_step(x_t_latent, depth_latent, t, idx) | |
if idx < len(self.sub_timesteps_tensor) - 1: | |
if self.do_add_noise: | |
x_t_latent = self.alpha_prod_t_sqrt[idx + 1] * x_0_pred + self.beta_prod_t_sqrt[ | |
idx + 1 | |
] * torch.randn_like(x_0_pred, device=self.device, dtype=self.dtype) | |
else: | |
x_t_latent = self.alpha_prod_t_sqrt[idx + 1] * x_0_pred | |
x_0_pred_out = x_0_pred | |
return x_0_pred_out | |
def __call__(self, x: Union[torch.Tensor, PIL.Image.Image, np.ndarray]) -> torch.Tensor: | |
start = torch.cuda.Event(enable_timing=True) | |
end = torch.cuda.Event(enable_timing=True) | |
start.record() | |
x = self.image_processor.preprocess(x, self.height, self.width).to(device=self.device, dtype=self.dtype) | |
if self.similar_image_filter: | |
x = self.similar_filter(x) | |
if x is None: | |
time.sleep(self.inference_time_ema) | |
return self.prev_image_result | |
x_t_latent = self.encode_image(x) | |
start_depth = torch.cuda.Event(enable_timing=True) | |
end_depth = torch.cuda.Event(enable_timing=True) | |
start_depth.record() | |
depth_latent = self.encode_depth(x) | |
end_depth.record() | |
torch.cuda.synchronize() | |
depth_time = start_depth.elapsed_time(end_depth) / 1000 | |
x_t_latent = x_t_latent.unsqueeze(2) | |
depth_latent = depth_latent.unsqueeze(2) | |
x_0_pred_out = self.predict_x0_batch(x_t_latent, depth_latent) # [1, c, 1, h, w] | |
x_0_pred_out = rearrange(x_0_pred_out, "b c f h w -> (b f) c h w") | |
x_output = self.decode_image(x_0_pred_out).detach().clone() | |
self.prev_image_result = x_output | |
end.record() | |
torch.cuda.synchronize() | |
inference_time = start.elapsed_time(end) / 1000 | |
self.inference_time_ema = 0.9 * self.inference_time_ema + 0.1 * inference_time | |
self.depth_time_ema = 0.9 * self.depth_time_ema + 0.1 * depth_time | |
self.inference_time_list.append(inference_time) | |
self.depth_time_list.append(depth_time) | |
return x_output | |
def load_warmup_unet(self, config): | |
unet_warmup = self.pipe.build_warmup_unet(config) | |
self.unet_warmup = unet_warmup | |
self.pipe.unet_warmup = unet_warmup | |
print("Load Warmup UNet.") | |