File size: 27,109 Bytes
d16b52d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
import time
from typing import Any, Dict, List, Literal, Optional, Tuple, Union

import numpy as np
import PIL.Image
import torch
import torch.nn.functional as F
from diffusers import LCMScheduler
from diffusers.image_processor import VaeImageProcessor
from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_img2img import (
    retrieve_latents,
)
from einops import rearrange

from live2diff.image_filter import SimilarImageFilter

from .animatediff.pipeline import AnimationDepthPipeline


WARMUP_FRAMES = 8
WINDOW_SIZE = 16


class StreamAnimateDiffusionDepth:
    def __init__(
        self,
        pipe: AnimationDepthPipeline,
        num_inference_steps: int,
        t_index_list: Optional[List[int]] = None,
        strength: Optional[float] = None,
        torch_dtype: torch.dtype = torch.float16,
        width: int = 512,
        height: int = 512,
        do_add_noise: bool = True,
        use_denoising_batch: bool = True,
        frame_buffer_size: int = 1,
        clip_skip: int = 1,
        cfg_type: Literal["none", "full", "self", "initialize"] = "none",
    ) -> None:
        self.device = pipe.device
        self.dtype = torch_dtype
        self.generator = None

        self.height = height
        self.width = width

        self.pipe = pipe

        self.latent_height = int(height // pipe.vae_scale_factor)
        self.latent_width = int(width // pipe.vae_scale_factor)

        self.clip_skip = clip_skip

        self.scheduler = LCMScheduler.from_config(self.pipe.scheduler.config)
        self.scheduler.set_timesteps(num_inference_steps, self.device)
        if strength is not None:
            t_index_list, timesteps = self.get_timesteps(num_inference_steps, strength, self.device)
            print(
                f"Generate t_index_list: {t_index_list} via "
                f"num_inference_steps: {num_inference_steps}, strength: {strength}"
            )
            self.timesteps = timesteps
        else:
            print(
                f"t_index_list is passed: {t_index_list}. "
                f"Number Inference Steps: {num_inference_steps}, "
                f"equivalents to strength {1 - t_index_list[0] / num_inference_steps}."
            )
            self.timesteps = self.scheduler.timesteps.to(self.device)

        self.frame_bff_size = frame_buffer_size
        self.denoising_steps_num = len(t_index_list)
        self.strength = strength

        assert cfg_type == "none", f'cfg_type must be "none" for now, but got {cfg_type}.'
        self.cfg_type = cfg_type

        if use_denoising_batch:
            self.batch_size = self.denoising_steps_num * frame_buffer_size
            if self.cfg_type == "initialize":
                self.trt_unet_batch_size = (self.denoising_steps_num + 1) * self.frame_bff_size
            elif self.cfg_type == "full":
                self.trt_unet_batch_size = 2 * self.denoising_steps_num * self.frame_bff_size
            else:
                self.trt_unet_batch_size = self.denoising_steps_num * frame_buffer_size
        else:
            self.trt_unet_batch_size = self.frame_bff_size
            self.batch_size = frame_buffer_size

        self.t_list = t_index_list

        self.do_add_noise = do_add_noise
        self.use_denoising_batch = use_denoising_batch

        self.similar_image_filter = False
        self.similar_filter = SimilarImageFilter()
        self.prev_image_result = None

        self.image_processor = VaeImageProcessor(pipe.vae_scale_factor)

        self.text_encoder = pipe.text_encoder
        self.unet = pipe.unet
        self.vae = pipe.vae

        self.depth_detector = pipe.depth_model
        self.inference_time_ema = 0
        self.depth_time_ema = 0
        self.inference_time_list = []
        self.depth_time_list = []
        self.mask_shift = 1

        self.is_tensorrt = False

    def prepare_cache(self, height, width, denoising_steps_num):
        kv_cache_list = self.pipe.prepare_cache(
            height=height,
            width=width,
            denoising_steps_num=denoising_steps_num,
        )
        self.pipe.prepare_warmup_unet(height=height, width=width, unet=self.unet_warmup)
        self.kv_cache_list = kv_cache_list

    def get_timesteps(self, num_inference_steps, strength, device):
        # get the original timestep using init_timestep
        init_timestep = min(int(num_inference_steps * strength), num_inference_steps)

        t_start = max(num_inference_steps - init_timestep, 0)
        timesteps = self.scheduler.timesteps[t_start:].to(device)
        t_index = list(range(len(timesteps)))

        return t_index, timesteps

    def load_lora(
        self,
        pretrained_lora_model_name_or_path_or_dict: Union[str, Dict[str, torch.Tensor]],
        adapter_name: Optional[Any] = None,
        **kwargs,
    ) -> None:
        self.pipe.load_lora_weights(
            pretrained_lora_model_name_or_path_or_dict,
            adapter_name,
            **kwargs,
        )

    def fuse_lora(
        self,
        fuse_unet: bool = True,
        fuse_text_encoder: bool = True,
        lora_scale: float = 1.0,
        safe_fusing: bool = False,
    ) -> None:
        self.pipe.fuse_lora(
            fuse_unet=fuse_unet,
            fuse_text_encoder=fuse_text_encoder,
            lora_scale=lora_scale,
            safe_fusing=safe_fusing,
        )

    def enable_similar_image_filter(
        self,
        threshold: float = 0.98,
        max_skip_frame: float = 10,
    ) -> None:
        self.similar_image_filter = True
        self.similar_filter.set_threshold(threshold)
        self.similar_filter.set_max_skip_frame(max_skip_frame)

    def disable_similar_image_filter(self) -> None:
        self.similar_image_filter = False

    @torch.no_grad()
    def prepare(
        self,
        warmup_frames: torch.Tensor,
        prompt: str,
        negative_prompt: str = "",
        guidance_scale: float = 1.2,
        delta: float = 1.0,
        generator: Optional[torch.Generator] = None,
        seed: int = 2,
    ) -> None:
        """
        Forward warm-up frames and fill the buffer
        images: [warmup_size, 3, h, w] in [0, 1]
        """

        if generator is None:
            self.generator = torch.Generator(device=self.device)
            self.generator.manual_seed(seed)
        else:
            self.generator = generator
        # initialize x_t_latent (it can be any random tensor)
        if self.denoising_steps_num > 1:
            self.x_t_latent_buffer = torch.zeros(
                (
                    (self.denoising_steps_num - 1) * self.frame_bff_size,
                    4,
                    1,  # for video
                    self.latent_height,
                    self.latent_width,
                ),
                dtype=self.dtype,
                device=self.device,
            )

            self.depth_latent_buffer = torch.zeros_like(self.x_t_latent_buffer)
        else:
            self.x_t_latent_buffer = None
            self.depth_latent_buffer = None

        self.attn_bias, self.pe_idx, self.update_idx = self.initialize_attn_bias_pe_and_update_idx()

        if self.cfg_type == "none":
            self.guidance_scale = 1.0
        else:
            self.guidance_scale = guidance_scale
        self.delta = delta

        do_classifier_free_guidance = False
        if self.guidance_scale > 1.0:
            do_classifier_free_guidance = True

        encoder_output = self.pipe._encode_prompt(
            prompt=prompt,
            device=self.device,
            num_videos_per_prompt=1,
            do_classifier_free_guidance=do_classifier_free_guidance,
            negative_prompt=negative_prompt,
            clip_skip=self.clip_skip,
        )
        self.prompt_embeds = encoder_output[0].repeat(self.batch_size, 1, 1)

        if self.use_denoising_batch and self.cfg_type == "full":
            uncond_prompt_embeds = encoder_output[1].repeat(self.batch_size, 1, 1)
        elif self.cfg_type == "initialize":
            uncond_prompt_embeds = encoder_output[1].repeat(self.frame_bff_size, 1, 1)

        if self.guidance_scale > 1.0 and (self.cfg_type == "initialize" or self.cfg_type == "full"):
            self.prompt_embeds = torch.cat([uncond_prompt_embeds, self.prompt_embeds], dim=0)

        # make sub timesteps list based on the indices in the t_list list and the values in the timesteps list
        self.sub_timesteps = []
        for t in self.t_list:
            self.sub_timesteps.append(self.timesteps[t])

        sub_timesteps_tensor = torch.tensor(self.sub_timesteps, dtype=torch.long, device=self.device)
        self.sub_timesteps_tensor = torch.repeat_interleave(
            sub_timesteps_tensor,
            repeats=self.frame_bff_size if self.use_denoising_batch else 1,
            dim=0,
        )

        self.init_noise = torch.randn(
            (self.batch_size, 4, WARMUP_FRAMES, self.latent_height, self.latent_width),
            generator=generator,
        ).to(device=self.device, dtype=self.dtype)

        self.stock_noise = torch.zeros_like(self.init_noise)

        c_skip_list = []
        c_out_list = []
        for timestep in self.sub_timesteps:
            c_skip, c_out = self.scheduler.get_scalings_for_boundary_condition_discrete(timestep)
            c_skip_list.append(c_skip)
            c_out_list.append(c_out)

        self.c_skip = (
            torch.stack(c_skip_list).view(len(self.t_list), 1, 1, 1, 1).to(dtype=self.dtype, device=self.device)
        )
        self.c_out = (
            torch.stack(c_out_list).view(len(self.t_list), 1, 1, 1, 1).to(dtype=self.dtype, device=self.device)
        )
        # print(self.c_skip)

        alpha_prod_t_sqrt_list = []
        beta_prod_t_sqrt_list = []
        for timestep in self.sub_timesteps:
            alpha_prod_t_sqrt = self.scheduler.alphas_cumprod[timestep].sqrt()
            beta_prod_t_sqrt = (1 - self.scheduler.alphas_cumprod[timestep]).sqrt()
            alpha_prod_t_sqrt_list.append(alpha_prod_t_sqrt)
            beta_prod_t_sqrt_list.append(beta_prod_t_sqrt)
        alpha_prod_t_sqrt = (
            torch.stack(alpha_prod_t_sqrt_list)
            .view(len(self.t_list), 1, 1, 1, 1)
            .to(dtype=self.dtype, device=self.device)
        )
        beta_prod_t_sqrt = (
            torch.stack(beta_prod_t_sqrt_list)
            .view(len(self.t_list), 1, 1, 1, 1)
            .to(dtype=self.dtype, device=self.device)
        )
        self.alpha_prod_t_sqrt = torch.repeat_interleave(
            alpha_prod_t_sqrt,
            repeats=self.frame_bff_size if self.use_denoising_batch else 1,
            dim=0,
        )
        self.beta_prod_t_sqrt = torch.repeat_interleave(
            beta_prod_t_sqrt,
            repeats=self.frame_bff_size if self.use_denoising_batch else 1,
            dim=0,
        )
        # do warmup
        # 1. encode images
        warmup_x_list = []
        for f in warmup_frames:
            x = self.image_processor.preprocess(f, self.height, self.width)
            warmup_x_list.append(x.to(device=self.device, dtype=self.dtype))
        warmup_x = torch.cat(warmup_x_list, dim=0)  # [warmup_size, c, h, w]
        warmup_x_t = self.encode_image(warmup_x)
        x_t_latent = rearrange(warmup_x_t, "f c h w -> c f h w")[None, ...]
        depth_latent = self.encode_depth(warmup_x)
        depth_latent = rearrange(depth_latent, "f c h w -> c f h w")[None, ...]

        # 2. run warmup denoising
        self.unet_warmup = self.unet_warmup.to(device="cuda", dtype=self.dtype)
        warmup_prompt = self.prompt_embeds[0:1]
        for idx, t in enumerate(self.sub_timesteps_tensor):
            t = t.view(1).repeat(x_t_latent.shape[0])

            output_t = self.unet_warmup(
                x_t_latent,
                t,
                temporal_attention_mask=None,
                depth_sample=depth_latent,
                encoder_hidden_states=warmup_prompt,
                kv_cache=[cache[idx] for cache in self.kv_cache_list],
                return_dict=True,
            )
            model_pred = output_t["sample"]
            x_0_pred = self.scheduler_step_batch(model_pred, x_t_latent, idx)
            if idx < len(self.sub_timesteps_tensor) - 1:
                # x_t_latent = self.alpha_prod_t_sqrt[idx + 1] * x_0_pred

                x_t_latent = self.alpha_prod_t_sqrt[idx + 1] * x_0_pred + self.beta_prod_t_sqrt[
                    idx + 1
                ] * torch.randn_like(x_0_pred, device=self.device, dtype=self.dtype)

        self.unet_warmup = self.unet_warmup.to(device="cpu")
        x_0_pred = rearrange(x_0_pred, "b c f h w -> b f c h w")[0]  # [f, c, h, w]
        denoisied_frame = self.decode_image(x_0_pred)

        self.warmup_engine()

        return denoisied_frame

    def warmup_engine(self):
        """Warmup tensorrt engine."""

        if not self.is_tensorrt:
            return

        print("Warmup TensorRT engine.")
        pseudo_latent = self.init_noise[:, :, 0:1, ...]
        for _ in range(self.batch_size):
            self.unet(
                pseudo_latent,
                self.sub_timesteps_tensor,
                depth_sample=pseudo_latent,
                encoder_hidden_states=self.prompt_embeds,
                temporal_attention_mask=self.attn_bias,
                kv_cache=self.kv_cache_list,
                pe_idx=self.pe_idx,
                update_idx=self.update_idx,
                return_dict=True,
            )
        print("Warmup TensorRT engine finished.")

    @torch.no_grad()
    def update_prompt(self, prompt: str) -> None:
        encoder_output = self.pipe._encode_prompt(
            prompt=prompt,
            device=self.device,
            num_images_per_prompt=1,
            do_classifier_free_guidance=False,
        )
        self.prompt_embeds = encoder_output[0].repeat(self.batch_size, 1, 1)

    def add_noise(
        self,
        original_samples: torch.Tensor,
        noise: torch.Tensor,
        t_index: int,
    ) -> torch.Tensor:
        noisy_samples = self.alpha_prod_t_sqrt[t_index] * original_samples + self.beta_prod_t_sqrt[t_index] * noise
        return noisy_samples

    def scheduler_step_batch(
        self,
        model_pred_batch: torch.Tensor,
        x_t_latent_batch: torch.Tensor,
        idx: Optional[int] = None,
    ) -> torch.Tensor:
        # TODO: use t_list to select beta_prod_t_sqrt
        if idx is None:
            F_theta = (x_t_latent_batch - self.beta_prod_t_sqrt * model_pred_batch) / self.alpha_prod_t_sqrt
            denoised_batch = self.c_out * F_theta + self.c_skip * x_t_latent_batch
        else:
            F_theta = (x_t_latent_batch - self.beta_prod_t_sqrt[idx] * model_pred_batch) / self.alpha_prod_t_sqrt[idx]
            denoised_batch = self.c_out[idx] * F_theta + self.c_skip[idx] * x_t_latent_batch

        return denoised_batch

    def initialize_attn_bias_pe_and_update_idx(self):
        attn_mask = torch.zeros((self.denoising_steps_num, WINDOW_SIZE), dtype=torch.bool, device=self.device)
        attn_mask[:, :WARMUP_FRAMES] = True
        attn_mask[0, WARMUP_FRAMES] = True
        attn_bias = torch.zeros_like(attn_mask, dtype=self.dtype)
        attn_bias.masked_fill_(attn_mask.logical_not(), float("-inf"))

        pe_idx = torch.arange(WINDOW_SIZE).unsqueeze(0).repeat(self.denoising_steps_num, 1).cuda()
        update_idx = torch.ones(self.denoising_steps_num, dtype=torch.int64, device=self.device) * WARMUP_FRAMES
        update_idx[1] = WARMUP_FRAMES + 1

        return attn_bias, pe_idx, update_idx

    def update_attn_bias(self, attn_bias, pe_idx, update_idx):
        """
        attn_bias: (timesteps, prev_len), init value: [[0, 0, 0, inf], [0, 0, inf, inf]]
        pe_idx: (timesteps, prev_len), init value: [[0, 1, 2, 3], [0, 1, 2, 3]]
        update_idx: (timesteps, ), init value: [2, 1]
        """

        for idx in range(self.denoising_steps_num):
            # update pe_idx and update_idx based on attn_bias from last iteration
            if torch.isinf(attn_bias[idx]).any():
                # some position not filled, do not change pe
                # some position not filled, fill the last position
                update_idx[idx] = (attn_bias[idx] == 0).sum()
            else:
                # all position are filled, roll pe
                pe_idx[idx, WARMUP_FRAMES:] = pe_idx[idx, WARMUP_FRAMES:].roll(shifts=1, dims=0)
                # all position are filled, fill the position with largest PE
                update_idx[idx] = pe_idx[idx].argmax()

            num_unmask = (attn_bias[idx] == 0).sum()
            attn_bias[idx, : min(num_unmask + 1, WINDOW_SIZE)] = 0

        return attn_bias, pe_idx, update_idx

    def unet_step(
        self,
        x_t_latent: torch.Tensor,
        depth_latent: torch.Tensor,
        t_list: Union[torch.Tensor, list[int]],
        idx: Optional[int] = None,
    ) -> Tuple[torch.Tensor, torch.Tensor]:
        if self.guidance_scale > 1.0 and (self.cfg_type == "initialize"):
            x_t_latent_plus_uc = torch.concat([x_t_latent[0:1], x_t_latent], dim=0)
            t_list = torch.concat([t_list[0:1], t_list], dim=0)
        elif self.guidance_scale > 1.0 and (self.cfg_type == "full"):
            x_t_latent_plus_uc = torch.concat([x_t_latent, x_t_latent], dim=0)
            t_list = torch.concat([t_list, t_list], dim=0)
        else:
            x_t_latent_plus_uc = x_t_latent

        output = self.unet(
            x_t_latent_plus_uc,
            t_list,
            depth_sample=depth_latent,
            encoder_hidden_states=self.prompt_embeds,
            temporal_attention_mask=self.attn_bias,
            kv_cache=self.kv_cache_list,
            pe_idx=self.pe_idx,
            update_idx=self.update_idx,
            return_dict=True,
        )
        model_pred = output["sample"]
        kv_cache_list = output["kv_cache"]
        self.kv_cache_list = kv_cache_list

        if self.guidance_scale > 1.0 and (self.cfg_type == "initialize"):
            noise_pred_text = model_pred[1:]
            self.stock_noise = torch.concat(
                [model_pred[0:1], self.stock_noise[1:]], dim=0
            )  # ここコメントアウトでself out cfg
        elif self.guidance_scale > 1.0 and (self.cfg_type == "full"):
            noise_pred_uncond, noise_pred_text = model_pred.chunk(2)
        else:
            noise_pred_text = model_pred
        if self.guidance_scale > 1.0 and (self.cfg_type == "self" or self.cfg_type == "initialize"):
            noise_pred_uncond = self.stock_noise * self.delta
        if self.guidance_scale > 1.0 and self.cfg_type != "none":
            model_pred = noise_pred_uncond + self.guidance_scale * (noise_pred_text - noise_pred_uncond)
        else:
            model_pred = noise_pred_text

        # compute the previous noisy sample x_t -> x_t-1
        if self.use_denoising_batch:
            denoised_batch = self.scheduler_step_batch(model_pred, x_t_latent, idx)
            if self.cfg_type == "self" or self.cfg_type == "initialize":
                scaled_noise = self.beta_prod_t_sqrt * self.stock_noise
                delta_x = self.scheduler_step_batch(model_pred, scaled_noise, idx)
                alpha_next = torch.concat(
                    [
                        self.alpha_prod_t_sqrt[1:],
                        torch.ones_like(self.alpha_prod_t_sqrt[0:1]),
                    ],
                    dim=0,
                )
                delta_x = alpha_next * delta_x
                beta_next = torch.concat(
                    [
                        self.beta_prod_t_sqrt[1:],
                        torch.ones_like(self.beta_prod_t_sqrt[0:1]),
                    ],
                    dim=0,
                )
                delta_x = delta_x / beta_next
                init_noise = torch.concat([self.init_noise[1:], self.init_noise[0:1]], dim=0)
                self.stock_noise = init_noise + delta_x

        else:
            denoised_batch = self.scheduler_step_batch(model_pred, x_t_latent, idx)

        return denoised_batch, model_pred

    def encode_image(self, image_tensors: torch.Tensor) -> torch.Tensor:
        """
        image_tensors: [f, c, h, w]
        """
        # num_frames = image_tensors.shape[2]
        image_tensors = image_tensors.to(
            device=self.device,
            dtype=self.vae.dtype,
        )
        img_latent = retrieve_latents(self.vae.encode(image_tensors), self.generator)
        img_latent = img_latent * self.vae.config.scaling_factor
        noise = torch.randn(
            img_latent.shape,
            device=img_latent.device,
            dtype=img_latent.dtype,
            generator=self.generator,
        )
        x_t_latent = self.add_noise(img_latent, noise, 0)
        return x_t_latent

    def decode_image(self, x_0_pred_out: torch.Tensor) -> torch.Tensor:
        """
        x_0_pred: [f, c, h, w]
        """
        output_latent = self.vae.decode(x_0_pred_out / self.vae.config.scaling_factor, return_dict=False)[0]
        return output_latent.clip(-1, 1)

    def encode_depth(self, image_tensors: torch.Tensor) -> Tuple[torch.Tensor]:
        """
        image_tensor: [f, c, h, w], [-1, 1]
        """
        image_tensors = image_tensors.to(
            device=self.device,
            dtype=self.depth_detector.dtype,
        )
        # depth_map = self.depth_detector(image_tensors)
        # depth_map_norm = (depth_map - depth_map.min()) / (depth_map.max() - depth_map.min())
        # depth_map_norm = depth_map_norm[:, None].repeat(1, 3, 1, 1) * 2 - 1
        # depth_latent = retrieve_latents(self.vae.encode(depth_map_norm.to(dtype=self.vae.dtype)), self.generator)
        # depth_latent = depth_latent * self.vae.config.scaling_factor
        # return depth_latent

        # preprocess
        h, w = image_tensors.shape[2], image_tensors.shape[3]
        images_input = F.interpolate(image_tensors, (384, 384), mode="bilinear", align_corners=False)
        # forward
        depth_map = self.depth_detector(images_input)
        # postprocess
        depth_map_norm = (depth_map - depth_map.min()) / (depth_map.max() - depth_map.min())
        depth_map_norm = depth_map_norm[:, None].repeat(1, 3, 1, 1) * 2 - 1
        depth_map_norm = F.interpolate(depth_map_norm, (h, w), mode="bilinear", align_corners=False)
        # encode
        depth_latent = retrieve_latents(self.vae.encode(depth_map_norm.to(dtype=self.vae.dtype)), self.generator)
        depth_latent = depth_latent * self.vae.config.scaling_factor
        return depth_latent

    def predict_x0_batch(self, x_t_latent: torch.Tensor, depth_latent: torch.Tensor) -> torch.Tensor:
        prev_latent_batch = self.x_t_latent_buffer
        prev_depth_latent_batch = self.depth_latent_buffer

        if self.use_denoising_batch:
            t_list = self.sub_timesteps_tensor
            if self.denoising_steps_num > 1:
                x_t_latent = torch.cat((x_t_latent, prev_latent_batch), dim=0)
                depth_latent = torch.cat((depth_latent, prev_depth_latent_batch), dim=0)

                self.stock_noise = torch.cat((self.init_noise[0:1], self.stock_noise[:-1]), dim=0)
            x_0_pred_batch, model_pred = self.unet_step(x_t_latent, depth_latent, t_list)
            self.attn_bias, self.pe_idx, self.update_idx = self.update_attn_bias(
                self.attn_bias, self.pe_idx, self.update_idx
            )

            if self.denoising_steps_num > 1:
                x_0_pred_out = x_0_pred_batch[-1].unsqueeze(0)
                if self.do_add_noise:
                    # self.x_t_latent_buffer = (
                    #     self.alpha_prod_t_sqrt[1:] * x_0_pred_batch[:-1]
                    #     + self.beta_prod_t_sqrt[1:] * self.init_noise[1:]
                    # )
                    self.x_t_latent_buffer = self.alpha_prod_t_sqrt[1:] * x_0_pred_batch[:-1] + self.beta_prod_t_sqrt[
                        1:
                    ] * torch.randn_like(x_0_pred_batch[:-1])
                else:
                    self.x_t_latent_buffer = self.alpha_prod_t_sqrt[1:] * x_0_pred_batch[:-1]
                self.depth_latent_buffer = depth_latent[:-1]
            else:
                x_0_pred_out = x_0_pred_batch
                self.x_t_latent_buffer = None
        else:
            self.init_noise = x_t_latent
            for idx, t in enumerate(self.sub_timesteps_tensor):
                t = t.view(
                    1,
                ).repeat(
                    self.frame_bff_size,
                )
                x_0_pred, model_pred = self.unet_step(x_t_latent, depth_latent, t, idx)
                if idx < len(self.sub_timesteps_tensor) - 1:
                    if self.do_add_noise:
                        x_t_latent = self.alpha_prod_t_sqrt[idx + 1] * x_0_pred + self.beta_prod_t_sqrt[
                            idx + 1
                        ] * torch.randn_like(x_0_pred, device=self.device, dtype=self.dtype)
                    else:
                        x_t_latent = self.alpha_prod_t_sqrt[idx + 1] * x_0_pred
            x_0_pred_out = x_0_pred

        return x_0_pred_out

    @torch.no_grad()
    def __call__(self, x: Union[torch.Tensor, PIL.Image.Image, np.ndarray]) -> torch.Tensor:
        start = torch.cuda.Event(enable_timing=True)
        end = torch.cuda.Event(enable_timing=True)
        start.record()
        x = self.image_processor.preprocess(x, self.height, self.width).to(device=self.device, dtype=self.dtype)
        if self.similar_image_filter:
            x = self.similar_filter(x)
            if x is None:
                time.sleep(self.inference_time_ema)
                return self.prev_image_result
        x_t_latent = self.encode_image(x)

        start_depth = torch.cuda.Event(enable_timing=True)
        end_depth = torch.cuda.Event(enable_timing=True)
        start_depth.record()
        depth_latent = self.encode_depth(x)
        end_depth.record()
        torch.cuda.synchronize()
        depth_time = start_depth.elapsed_time(end_depth) / 1000

        x_t_latent = x_t_latent.unsqueeze(2)
        depth_latent = depth_latent.unsqueeze(2)
        x_0_pred_out = self.predict_x0_batch(x_t_latent, depth_latent)  # [1, c, 1, h, w]
        x_0_pred_out = rearrange(x_0_pred_out, "b c f h w -> (b f) c h w")
        x_output = self.decode_image(x_0_pred_out).detach().clone()

        self.prev_image_result = x_output
        end.record()
        torch.cuda.synchronize()
        inference_time = start.elapsed_time(end) / 1000
        self.inference_time_ema = 0.9 * self.inference_time_ema + 0.1 * inference_time
        self.depth_time_ema = 0.9 * self.depth_time_ema + 0.1 * depth_time
        self.inference_time_list.append(inference_time)
        self.depth_time_list.append(depth_time)
        return x_output

    def load_warmup_unet(self, config):
        unet_warmup = self.pipe.build_warmup_unet(config)
        self.unet_warmup = unet_warmup
        self.pipe.unet_warmup = unet_warmup
        print("Load Warmup UNet.")