Spaces:
Sleeping
Sleeping
File size: 27,109 Bytes
d16b52d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 |
import time
from typing import Any, Dict, List, Literal, Optional, Tuple, Union
import numpy as np
import PIL.Image
import torch
import torch.nn.functional as F
from diffusers import LCMScheduler
from diffusers.image_processor import VaeImageProcessor
from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_img2img import (
retrieve_latents,
)
from einops import rearrange
from live2diff.image_filter import SimilarImageFilter
from .animatediff.pipeline import AnimationDepthPipeline
WARMUP_FRAMES = 8
WINDOW_SIZE = 16
class StreamAnimateDiffusionDepth:
def __init__(
self,
pipe: AnimationDepthPipeline,
num_inference_steps: int,
t_index_list: Optional[List[int]] = None,
strength: Optional[float] = None,
torch_dtype: torch.dtype = torch.float16,
width: int = 512,
height: int = 512,
do_add_noise: bool = True,
use_denoising_batch: bool = True,
frame_buffer_size: int = 1,
clip_skip: int = 1,
cfg_type: Literal["none", "full", "self", "initialize"] = "none",
) -> None:
self.device = pipe.device
self.dtype = torch_dtype
self.generator = None
self.height = height
self.width = width
self.pipe = pipe
self.latent_height = int(height // pipe.vae_scale_factor)
self.latent_width = int(width // pipe.vae_scale_factor)
self.clip_skip = clip_skip
self.scheduler = LCMScheduler.from_config(self.pipe.scheduler.config)
self.scheduler.set_timesteps(num_inference_steps, self.device)
if strength is not None:
t_index_list, timesteps = self.get_timesteps(num_inference_steps, strength, self.device)
print(
f"Generate t_index_list: {t_index_list} via "
f"num_inference_steps: {num_inference_steps}, strength: {strength}"
)
self.timesteps = timesteps
else:
print(
f"t_index_list is passed: {t_index_list}. "
f"Number Inference Steps: {num_inference_steps}, "
f"equivalents to strength {1 - t_index_list[0] / num_inference_steps}."
)
self.timesteps = self.scheduler.timesteps.to(self.device)
self.frame_bff_size = frame_buffer_size
self.denoising_steps_num = len(t_index_list)
self.strength = strength
assert cfg_type == "none", f'cfg_type must be "none" for now, but got {cfg_type}.'
self.cfg_type = cfg_type
if use_denoising_batch:
self.batch_size = self.denoising_steps_num * frame_buffer_size
if self.cfg_type == "initialize":
self.trt_unet_batch_size = (self.denoising_steps_num + 1) * self.frame_bff_size
elif self.cfg_type == "full":
self.trt_unet_batch_size = 2 * self.denoising_steps_num * self.frame_bff_size
else:
self.trt_unet_batch_size = self.denoising_steps_num * frame_buffer_size
else:
self.trt_unet_batch_size = self.frame_bff_size
self.batch_size = frame_buffer_size
self.t_list = t_index_list
self.do_add_noise = do_add_noise
self.use_denoising_batch = use_denoising_batch
self.similar_image_filter = False
self.similar_filter = SimilarImageFilter()
self.prev_image_result = None
self.image_processor = VaeImageProcessor(pipe.vae_scale_factor)
self.text_encoder = pipe.text_encoder
self.unet = pipe.unet
self.vae = pipe.vae
self.depth_detector = pipe.depth_model
self.inference_time_ema = 0
self.depth_time_ema = 0
self.inference_time_list = []
self.depth_time_list = []
self.mask_shift = 1
self.is_tensorrt = False
def prepare_cache(self, height, width, denoising_steps_num):
kv_cache_list = self.pipe.prepare_cache(
height=height,
width=width,
denoising_steps_num=denoising_steps_num,
)
self.pipe.prepare_warmup_unet(height=height, width=width, unet=self.unet_warmup)
self.kv_cache_list = kv_cache_list
def get_timesteps(self, num_inference_steps, strength, device):
# get the original timestep using init_timestep
init_timestep = min(int(num_inference_steps * strength), num_inference_steps)
t_start = max(num_inference_steps - init_timestep, 0)
timesteps = self.scheduler.timesteps[t_start:].to(device)
t_index = list(range(len(timesteps)))
return t_index, timesteps
def load_lora(
self,
pretrained_lora_model_name_or_path_or_dict: Union[str, Dict[str, torch.Tensor]],
adapter_name: Optional[Any] = None,
**kwargs,
) -> None:
self.pipe.load_lora_weights(
pretrained_lora_model_name_or_path_or_dict,
adapter_name,
**kwargs,
)
def fuse_lora(
self,
fuse_unet: bool = True,
fuse_text_encoder: bool = True,
lora_scale: float = 1.0,
safe_fusing: bool = False,
) -> None:
self.pipe.fuse_lora(
fuse_unet=fuse_unet,
fuse_text_encoder=fuse_text_encoder,
lora_scale=lora_scale,
safe_fusing=safe_fusing,
)
def enable_similar_image_filter(
self,
threshold: float = 0.98,
max_skip_frame: float = 10,
) -> None:
self.similar_image_filter = True
self.similar_filter.set_threshold(threshold)
self.similar_filter.set_max_skip_frame(max_skip_frame)
def disable_similar_image_filter(self) -> None:
self.similar_image_filter = False
@torch.no_grad()
def prepare(
self,
warmup_frames: torch.Tensor,
prompt: str,
negative_prompt: str = "",
guidance_scale: float = 1.2,
delta: float = 1.0,
generator: Optional[torch.Generator] = None,
seed: int = 2,
) -> None:
"""
Forward warm-up frames and fill the buffer
images: [warmup_size, 3, h, w] in [0, 1]
"""
if generator is None:
self.generator = torch.Generator(device=self.device)
self.generator.manual_seed(seed)
else:
self.generator = generator
# initialize x_t_latent (it can be any random tensor)
if self.denoising_steps_num > 1:
self.x_t_latent_buffer = torch.zeros(
(
(self.denoising_steps_num - 1) * self.frame_bff_size,
4,
1, # for video
self.latent_height,
self.latent_width,
),
dtype=self.dtype,
device=self.device,
)
self.depth_latent_buffer = torch.zeros_like(self.x_t_latent_buffer)
else:
self.x_t_latent_buffer = None
self.depth_latent_buffer = None
self.attn_bias, self.pe_idx, self.update_idx = self.initialize_attn_bias_pe_and_update_idx()
if self.cfg_type == "none":
self.guidance_scale = 1.0
else:
self.guidance_scale = guidance_scale
self.delta = delta
do_classifier_free_guidance = False
if self.guidance_scale > 1.0:
do_classifier_free_guidance = True
encoder_output = self.pipe._encode_prompt(
prompt=prompt,
device=self.device,
num_videos_per_prompt=1,
do_classifier_free_guidance=do_classifier_free_guidance,
negative_prompt=negative_prompt,
clip_skip=self.clip_skip,
)
self.prompt_embeds = encoder_output[0].repeat(self.batch_size, 1, 1)
if self.use_denoising_batch and self.cfg_type == "full":
uncond_prompt_embeds = encoder_output[1].repeat(self.batch_size, 1, 1)
elif self.cfg_type == "initialize":
uncond_prompt_embeds = encoder_output[1].repeat(self.frame_bff_size, 1, 1)
if self.guidance_scale > 1.0 and (self.cfg_type == "initialize" or self.cfg_type == "full"):
self.prompt_embeds = torch.cat([uncond_prompt_embeds, self.prompt_embeds], dim=0)
# make sub timesteps list based on the indices in the t_list list and the values in the timesteps list
self.sub_timesteps = []
for t in self.t_list:
self.sub_timesteps.append(self.timesteps[t])
sub_timesteps_tensor = torch.tensor(self.sub_timesteps, dtype=torch.long, device=self.device)
self.sub_timesteps_tensor = torch.repeat_interleave(
sub_timesteps_tensor,
repeats=self.frame_bff_size if self.use_denoising_batch else 1,
dim=0,
)
self.init_noise = torch.randn(
(self.batch_size, 4, WARMUP_FRAMES, self.latent_height, self.latent_width),
generator=generator,
).to(device=self.device, dtype=self.dtype)
self.stock_noise = torch.zeros_like(self.init_noise)
c_skip_list = []
c_out_list = []
for timestep in self.sub_timesteps:
c_skip, c_out = self.scheduler.get_scalings_for_boundary_condition_discrete(timestep)
c_skip_list.append(c_skip)
c_out_list.append(c_out)
self.c_skip = (
torch.stack(c_skip_list).view(len(self.t_list), 1, 1, 1, 1).to(dtype=self.dtype, device=self.device)
)
self.c_out = (
torch.stack(c_out_list).view(len(self.t_list), 1, 1, 1, 1).to(dtype=self.dtype, device=self.device)
)
# print(self.c_skip)
alpha_prod_t_sqrt_list = []
beta_prod_t_sqrt_list = []
for timestep in self.sub_timesteps:
alpha_prod_t_sqrt = self.scheduler.alphas_cumprod[timestep].sqrt()
beta_prod_t_sqrt = (1 - self.scheduler.alphas_cumprod[timestep]).sqrt()
alpha_prod_t_sqrt_list.append(alpha_prod_t_sqrt)
beta_prod_t_sqrt_list.append(beta_prod_t_sqrt)
alpha_prod_t_sqrt = (
torch.stack(alpha_prod_t_sqrt_list)
.view(len(self.t_list), 1, 1, 1, 1)
.to(dtype=self.dtype, device=self.device)
)
beta_prod_t_sqrt = (
torch.stack(beta_prod_t_sqrt_list)
.view(len(self.t_list), 1, 1, 1, 1)
.to(dtype=self.dtype, device=self.device)
)
self.alpha_prod_t_sqrt = torch.repeat_interleave(
alpha_prod_t_sqrt,
repeats=self.frame_bff_size if self.use_denoising_batch else 1,
dim=0,
)
self.beta_prod_t_sqrt = torch.repeat_interleave(
beta_prod_t_sqrt,
repeats=self.frame_bff_size if self.use_denoising_batch else 1,
dim=0,
)
# do warmup
# 1. encode images
warmup_x_list = []
for f in warmup_frames:
x = self.image_processor.preprocess(f, self.height, self.width)
warmup_x_list.append(x.to(device=self.device, dtype=self.dtype))
warmup_x = torch.cat(warmup_x_list, dim=0) # [warmup_size, c, h, w]
warmup_x_t = self.encode_image(warmup_x)
x_t_latent = rearrange(warmup_x_t, "f c h w -> c f h w")[None, ...]
depth_latent = self.encode_depth(warmup_x)
depth_latent = rearrange(depth_latent, "f c h w -> c f h w")[None, ...]
# 2. run warmup denoising
self.unet_warmup = self.unet_warmup.to(device="cuda", dtype=self.dtype)
warmup_prompt = self.prompt_embeds[0:1]
for idx, t in enumerate(self.sub_timesteps_tensor):
t = t.view(1).repeat(x_t_latent.shape[0])
output_t = self.unet_warmup(
x_t_latent,
t,
temporal_attention_mask=None,
depth_sample=depth_latent,
encoder_hidden_states=warmup_prompt,
kv_cache=[cache[idx] for cache in self.kv_cache_list],
return_dict=True,
)
model_pred = output_t["sample"]
x_0_pred = self.scheduler_step_batch(model_pred, x_t_latent, idx)
if idx < len(self.sub_timesteps_tensor) - 1:
# x_t_latent = self.alpha_prod_t_sqrt[idx + 1] * x_0_pred
x_t_latent = self.alpha_prod_t_sqrt[idx + 1] * x_0_pred + self.beta_prod_t_sqrt[
idx + 1
] * torch.randn_like(x_0_pred, device=self.device, dtype=self.dtype)
self.unet_warmup = self.unet_warmup.to(device="cpu")
x_0_pred = rearrange(x_0_pred, "b c f h w -> b f c h w")[0] # [f, c, h, w]
denoisied_frame = self.decode_image(x_0_pred)
self.warmup_engine()
return denoisied_frame
def warmup_engine(self):
"""Warmup tensorrt engine."""
if not self.is_tensorrt:
return
print("Warmup TensorRT engine.")
pseudo_latent = self.init_noise[:, :, 0:1, ...]
for _ in range(self.batch_size):
self.unet(
pseudo_latent,
self.sub_timesteps_tensor,
depth_sample=pseudo_latent,
encoder_hidden_states=self.prompt_embeds,
temporal_attention_mask=self.attn_bias,
kv_cache=self.kv_cache_list,
pe_idx=self.pe_idx,
update_idx=self.update_idx,
return_dict=True,
)
print("Warmup TensorRT engine finished.")
@torch.no_grad()
def update_prompt(self, prompt: str) -> None:
encoder_output = self.pipe._encode_prompt(
prompt=prompt,
device=self.device,
num_images_per_prompt=1,
do_classifier_free_guidance=False,
)
self.prompt_embeds = encoder_output[0].repeat(self.batch_size, 1, 1)
def add_noise(
self,
original_samples: torch.Tensor,
noise: torch.Tensor,
t_index: int,
) -> torch.Tensor:
noisy_samples = self.alpha_prod_t_sqrt[t_index] * original_samples + self.beta_prod_t_sqrt[t_index] * noise
return noisy_samples
def scheduler_step_batch(
self,
model_pred_batch: torch.Tensor,
x_t_latent_batch: torch.Tensor,
idx: Optional[int] = None,
) -> torch.Tensor:
# TODO: use t_list to select beta_prod_t_sqrt
if idx is None:
F_theta = (x_t_latent_batch - self.beta_prod_t_sqrt * model_pred_batch) / self.alpha_prod_t_sqrt
denoised_batch = self.c_out * F_theta + self.c_skip * x_t_latent_batch
else:
F_theta = (x_t_latent_batch - self.beta_prod_t_sqrt[idx] * model_pred_batch) / self.alpha_prod_t_sqrt[idx]
denoised_batch = self.c_out[idx] * F_theta + self.c_skip[idx] * x_t_latent_batch
return denoised_batch
def initialize_attn_bias_pe_and_update_idx(self):
attn_mask = torch.zeros((self.denoising_steps_num, WINDOW_SIZE), dtype=torch.bool, device=self.device)
attn_mask[:, :WARMUP_FRAMES] = True
attn_mask[0, WARMUP_FRAMES] = True
attn_bias = torch.zeros_like(attn_mask, dtype=self.dtype)
attn_bias.masked_fill_(attn_mask.logical_not(), float("-inf"))
pe_idx = torch.arange(WINDOW_SIZE).unsqueeze(0).repeat(self.denoising_steps_num, 1).cuda()
update_idx = torch.ones(self.denoising_steps_num, dtype=torch.int64, device=self.device) * WARMUP_FRAMES
update_idx[1] = WARMUP_FRAMES + 1
return attn_bias, pe_idx, update_idx
def update_attn_bias(self, attn_bias, pe_idx, update_idx):
"""
attn_bias: (timesteps, prev_len), init value: [[0, 0, 0, inf], [0, 0, inf, inf]]
pe_idx: (timesteps, prev_len), init value: [[0, 1, 2, 3], [0, 1, 2, 3]]
update_idx: (timesteps, ), init value: [2, 1]
"""
for idx in range(self.denoising_steps_num):
# update pe_idx and update_idx based on attn_bias from last iteration
if torch.isinf(attn_bias[idx]).any():
# some position not filled, do not change pe
# some position not filled, fill the last position
update_idx[idx] = (attn_bias[idx] == 0).sum()
else:
# all position are filled, roll pe
pe_idx[idx, WARMUP_FRAMES:] = pe_idx[idx, WARMUP_FRAMES:].roll(shifts=1, dims=0)
# all position are filled, fill the position with largest PE
update_idx[idx] = pe_idx[idx].argmax()
num_unmask = (attn_bias[idx] == 0).sum()
attn_bias[idx, : min(num_unmask + 1, WINDOW_SIZE)] = 0
return attn_bias, pe_idx, update_idx
def unet_step(
self,
x_t_latent: torch.Tensor,
depth_latent: torch.Tensor,
t_list: Union[torch.Tensor, list[int]],
idx: Optional[int] = None,
) -> Tuple[torch.Tensor, torch.Tensor]:
if self.guidance_scale > 1.0 and (self.cfg_type == "initialize"):
x_t_latent_plus_uc = torch.concat([x_t_latent[0:1], x_t_latent], dim=0)
t_list = torch.concat([t_list[0:1], t_list], dim=0)
elif self.guidance_scale > 1.0 and (self.cfg_type == "full"):
x_t_latent_plus_uc = torch.concat([x_t_latent, x_t_latent], dim=0)
t_list = torch.concat([t_list, t_list], dim=0)
else:
x_t_latent_plus_uc = x_t_latent
output = self.unet(
x_t_latent_plus_uc,
t_list,
depth_sample=depth_latent,
encoder_hidden_states=self.prompt_embeds,
temporal_attention_mask=self.attn_bias,
kv_cache=self.kv_cache_list,
pe_idx=self.pe_idx,
update_idx=self.update_idx,
return_dict=True,
)
model_pred = output["sample"]
kv_cache_list = output["kv_cache"]
self.kv_cache_list = kv_cache_list
if self.guidance_scale > 1.0 and (self.cfg_type == "initialize"):
noise_pred_text = model_pred[1:]
self.stock_noise = torch.concat(
[model_pred[0:1], self.stock_noise[1:]], dim=0
) # ここコメントアウトでself out cfg
elif self.guidance_scale > 1.0 and (self.cfg_type == "full"):
noise_pred_uncond, noise_pred_text = model_pred.chunk(2)
else:
noise_pred_text = model_pred
if self.guidance_scale > 1.0 and (self.cfg_type == "self" or self.cfg_type == "initialize"):
noise_pred_uncond = self.stock_noise * self.delta
if self.guidance_scale > 1.0 and self.cfg_type != "none":
model_pred = noise_pred_uncond + self.guidance_scale * (noise_pred_text - noise_pred_uncond)
else:
model_pred = noise_pred_text
# compute the previous noisy sample x_t -> x_t-1
if self.use_denoising_batch:
denoised_batch = self.scheduler_step_batch(model_pred, x_t_latent, idx)
if self.cfg_type == "self" or self.cfg_type == "initialize":
scaled_noise = self.beta_prod_t_sqrt * self.stock_noise
delta_x = self.scheduler_step_batch(model_pred, scaled_noise, idx)
alpha_next = torch.concat(
[
self.alpha_prod_t_sqrt[1:],
torch.ones_like(self.alpha_prod_t_sqrt[0:1]),
],
dim=0,
)
delta_x = alpha_next * delta_x
beta_next = torch.concat(
[
self.beta_prod_t_sqrt[1:],
torch.ones_like(self.beta_prod_t_sqrt[0:1]),
],
dim=0,
)
delta_x = delta_x / beta_next
init_noise = torch.concat([self.init_noise[1:], self.init_noise[0:1]], dim=0)
self.stock_noise = init_noise + delta_x
else:
denoised_batch = self.scheduler_step_batch(model_pred, x_t_latent, idx)
return denoised_batch, model_pred
def encode_image(self, image_tensors: torch.Tensor) -> torch.Tensor:
"""
image_tensors: [f, c, h, w]
"""
# num_frames = image_tensors.shape[2]
image_tensors = image_tensors.to(
device=self.device,
dtype=self.vae.dtype,
)
img_latent = retrieve_latents(self.vae.encode(image_tensors), self.generator)
img_latent = img_latent * self.vae.config.scaling_factor
noise = torch.randn(
img_latent.shape,
device=img_latent.device,
dtype=img_latent.dtype,
generator=self.generator,
)
x_t_latent = self.add_noise(img_latent, noise, 0)
return x_t_latent
def decode_image(self, x_0_pred_out: torch.Tensor) -> torch.Tensor:
"""
x_0_pred: [f, c, h, w]
"""
output_latent = self.vae.decode(x_0_pred_out / self.vae.config.scaling_factor, return_dict=False)[0]
return output_latent.clip(-1, 1)
def encode_depth(self, image_tensors: torch.Tensor) -> Tuple[torch.Tensor]:
"""
image_tensor: [f, c, h, w], [-1, 1]
"""
image_tensors = image_tensors.to(
device=self.device,
dtype=self.depth_detector.dtype,
)
# depth_map = self.depth_detector(image_tensors)
# depth_map_norm = (depth_map - depth_map.min()) / (depth_map.max() - depth_map.min())
# depth_map_norm = depth_map_norm[:, None].repeat(1, 3, 1, 1) * 2 - 1
# depth_latent = retrieve_latents(self.vae.encode(depth_map_norm.to(dtype=self.vae.dtype)), self.generator)
# depth_latent = depth_latent * self.vae.config.scaling_factor
# return depth_latent
# preprocess
h, w = image_tensors.shape[2], image_tensors.shape[3]
images_input = F.interpolate(image_tensors, (384, 384), mode="bilinear", align_corners=False)
# forward
depth_map = self.depth_detector(images_input)
# postprocess
depth_map_norm = (depth_map - depth_map.min()) / (depth_map.max() - depth_map.min())
depth_map_norm = depth_map_norm[:, None].repeat(1, 3, 1, 1) * 2 - 1
depth_map_norm = F.interpolate(depth_map_norm, (h, w), mode="bilinear", align_corners=False)
# encode
depth_latent = retrieve_latents(self.vae.encode(depth_map_norm.to(dtype=self.vae.dtype)), self.generator)
depth_latent = depth_latent * self.vae.config.scaling_factor
return depth_latent
def predict_x0_batch(self, x_t_latent: torch.Tensor, depth_latent: torch.Tensor) -> torch.Tensor:
prev_latent_batch = self.x_t_latent_buffer
prev_depth_latent_batch = self.depth_latent_buffer
if self.use_denoising_batch:
t_list = self.sub_timesteps_tensor
if self.denoising_steps_num > 1:
x_t_latent = torch.cat((x_t_latent, prev_latent_batch), dim=0)
depth_latent = torch.cat((depth_latent, prev_depth_latent_batch), dim=0)
self.stock_noise = torch.cat((self.init_noise[0:1], self.stock_noise[:-1]), dim=0)
x_0_pred_batch, model_pred = self.unet_step(x_t_latent, depth_latent, t_list)
self.attn_bias, self.pe_idx, self.update_idx = self.update_attn_bias(
self.attn_bias, self.pe_idx, self.update_idx
)
if self.denoising_steps_num > 1:
x_0_pred_out = x_0_pred_batch[-1].unsqueeze(0)
if self.do_add_noise:
# self.x_t_latent_buffer = (
# self.alpha_prod_t_sqrt[1:] * x_0_pred_batch[:-1]
# + self.beta_prod_t_sqrt[1:] * self.init_noise[1:]
# )
self.x_t_latent_buffer = self.alpha_prod_t_sqrt[1:] * x_0_pred_batch[:-1] + self.beta_prod_t_sqrt[
1:
] * torch.randn_like(x_0_pred_batch[:-1])
else:
self.x_t_latent_buffer = self.alpha_prod_t_sqrt[1:] * x_0_pred_batch[:-1]
self.depth_latent_buffer = depth_latent[:-1]
else:
x_0_pred_out = x_0_pred_batch
self.x_t_latent_buffer = None
else:
self.init_noise = x_t_latent
for idx, t in enumerate(self.sub_timesteps_tensor):
t = t.view(
1,
).repeat(
self.frame_bff_size,
)
x_0_pred, model_pred = self.unet_step(x_t_latent, depth_latent, t, idx)
if idx < len(self.sub_timesteps_tensor) - 1:
if self.do_add_noise:
x_t_latent = self.alpha_prod_t_sqrt[idx + 1] * x_0_pred + self.beta_prod_t_sqrt[
idx + 1
] * torch.randn_like(x_0_pred, device=self.device, dtype=self.dtype)
else:
x_t_latent = self.alpha_prod_t_sqrt[idx + 1] * x_0_pred
x_0_pred_out = x_0_pred
return x_0_pred_out
@torch.no_grad()
def __call__(self, x: Union[torch.Tensor, PIL.Image.Image, np.ndarray]) -> torch.Tensor:
start = torch.cuda.Event(enable_timing=True)
end = torch.cuda.Event(enable_timing=True)
start.record()
x = self.image_processor.preprocess(x, self.height, self.width).to(device=self.device, dtype=self.dtype)
if self.similar_image_filter:
x = self.similar_filter(x)
if x is None:
time.sleep(self.inference_time_ema)
return self.prev_image_result
x_t_latent = self.encode_image(x)
start_depth = torch.cuda.Event(enable_timing=True)
end_depth = torch.cuda.Event(enable_timing=True)
start_depth.record()
depth_latent = self.encode_depth(x)
end_depth.record()
torch.cuda.synchronize()
depth_time = start_depth.elapsed_time(end_depth) / 1000
x_t_latent = x_t_latent.unsqueeze(2)
depth_latent = depth_latent.unsqueeze(2)
x_0_pred_out = self.predict_x0_batch(x_t_latent, depth_latent) # [1, c, 1, h, w]
x_0_pred_out = rearrange(x_0_pred_out, "b c f h w -> (b f) c h w")
x_output = self.decode_image(x_0_pred_out).detach().clone()
self.prev_image_result = x_output
end.record()
torch.cuda.synchronize()
inference_time = start.elapsed_time(end) / 1000
self.inference_time_ema = 0.9 * self.inference_time_ema + 0.1 * inference_time
self.depth_time_ema = 0.9 * self.depth_time_ema + 0.1 * depth_time
self.inference_time_list.append(inference_time)
self.depth_time_list.append(depth_time)
return x_output
def load_warmup_unet(self, config):
unet_warmup = self.pipe.build_warmup_unet(config)
self.unet_warmup = unet_warmup
self.pipe.unet_warmup = unet_warmup
print("Load Warmup UNet.")
|