leoxing1996
add demo
d16b52d
# Adapted from https://github.com/guoyww/AnimateDiff
from dataclasses import dataclass
import torch
import torch.nn.functional as F
from diffusers.models.attention import FeedForward
from diffusers.utils import BaseOutput
from diffusers.utils.import_utils import is_xformers_available
from einops import rearrange
from torch import nn
from .attention import CrossAttention
from .positional_encoding import PositionalEncoding
from .resnet import zero_module
from .stream_motion_module import StreamTemporalAttention
def attn_mask_to_bias(attn_mask: torch.Tensor):
"""
Convert bool attention mask to float attention bias tensor.
"""
if attn_mask.dtype in [torch.float, torch.half]:
return attn_mask
elif attn_mask.dtype == torch.bool:
attn_bias = torch.zeros_like(attn_mask).float().masked_fill(attn_mask.logical_not(), float("-inf"))
return attn_bias
else:
raise TypeError("Only support float or bool tensor for attn_mask input. " f"But receive {type(attn_mask)}.")
@dataclass
class TemporalTransformer3DModelOutput(BaseOutput):
sample: torch.FloatTensor
if is_xformers_available():
import xformers
import xformers.ops
else:
xformers = None
def get_motion_module(
in_channels,
motion_module_type: str,
motion_module_kwargs: dict,
):
if motion_module_type == "Vanilla":
return VanillaTemporalModule(
in_channels=in_channels,
**motion_module_kwargs,
)
elif motion_module_type == "Streaming":
return VanillaTemporalModule(
in_channels=in_channels,
enable_streaming=True,
**motion_module_kwargs,
)
else:
raise ValueError
class VanillaTemporalModule(nn.Module):
def __init__(
self,
in_channels,
num_attention_heads=8,
num_transformer_block=2,
attention_block_types=("Temporal_Self", "Temporal_Self"),
cross_frame_attention_mode=None,
temporal_position_encoding=False,
temporal_position_encoding_max_len=32,
temporal_attention_dim_div=1,
# parameters for 3d conv
num_3d_conv_layers=0,
kernel_size=3,
down_up_sample=False,
zero_initialize=True,
attention_class_name="versatile",
attention_kwargs={},
enable_streaming=False,
*args,
**kwargs,
):
super().__init__()
self.temporal_transformer = TemporalTransformer3DModel(
in_channels=in_channels,
num_attention_heads=num_attention_heads,
attention_head_dim=in_channels // num_attention_heads // temporal_attention_dim_div,
num_layers=num_transformer_block,
attention_block_types=attention_block_types,
cross_frame_attention_mode=cross_frame_attention_mode,
temporal_position_encoding=temporal_position_encoding,
temporal_position_encoding_max_len=temporal_position_encoding_max_len,
attention_class_name=attention_class_name,
attention_kwargs=attention_kwargs,
enable_streaming=enable_streaming,
)
if zero_initialize:
self.temporal_transformer.proj_out = zero_module(self.temporal_transformer.proj_out)
self.enable_streaming = enable_streaming
def forward(self, *args, **kwargs):
fwd_fn = self.forward_streaming if self.enable_streaming else self.forward_orig
return fwd_fn(*args, **kwargs)
def forward_orig(
self,
input_tensor,
temb,
encoder_hidden_states,
attention_mask=None,
temporal_attention_mask=None,
kv_cache=None,
):
hidden_states = input_tensor
hidden_states = self.temporal_transformer(
hidden_states, encoder_hidden_states, attention_mask, temporal_attention_mask, kv_cache=kv_cache
)
output = hidden_states
return output
def forward_streaming(
self,
input_tensor,
temb,
encoder_hidden_states,
attention_mask=None,
temporal_attention_mask=None,
kv_cache=None,
pe_idx=None,
update_idx=None,
):
hidden_states = input_tensor
hidden_states = self.temporal_transformer(
hidden_states,
encoder_hidden_states,
attention_mask,
temporal_attention_mask,
kv_cache=kv_cache,
pe_idx=pe_idx,
update_idx=update_idx,
)
output = hidden_states
return output
class TemporalTransformer3DModel(nn.Module):
def __init__(
self,
in_channels,
num_attention_heads,
attention_head_dim,
num_layers,
attention_block_types=(
"Temporal_Self",
"Temporal_Self",
),
dropout=0.0,
norm_num_groups=32,
cross_attention_dim=1280,
activation_fn="geglu",
attention_bias=False,
upcast_attention=False,
cross_frame_attention_mode=None,
temporal_position_encoding=False,
temporal_position_encoding_max_len=32,
attention_class_name="versatile",
attention_kwargs={},
enable_streaming=False,
):
super().__init__()
inner_dim = num_attention_heads * attention_head_dim
self.norm = torch.nn.GroupNorm(num_groups=norm_num_groups, num_channels=in_channels, eps=1e-6, affine=True)
self.proj_in = nn.Linear(in_channels, inner_dim)
self.transformer_blocks = nn.ModuleList(
[
TemporalTransformerBlock(
dim=inner_dim,
num_attention_heads=num_attention_heads,
attention_head_dim=attention_head_dim,
attention_block_types=attention_block_types,
dropout=dropout,
norm_num_groups=norm_num_groups,
cross_attention_dim=cross_attention_dim,
activation_fn=activation_fn,
attention_bias=attention_bias,
upcast_attention=upcast_attention,
cross_frame_attention_mode=cross_frame_attention_mode,
temporal_position_encoding=temporal_position_encoding,
temporal_position_encoding_max_len=temporal_position_encoding_max_len,
attention_class_name=attention_class_name,
attention_extra_args=attention_kwargs,
enable_streaming=enable_streaming,
)
for d in range(num_layers)
]
)
self.proj_out = nn.Linear(inner_dim, in_channels)
self.enable_streaming = enable_streaming
def forward(self, *args, **kwargs):
fwd_fn = self.forward_streaming if self.enable_streaming else self.forward_orig
return fwd_fn(*args, **kwargs)
def forward_orig(
self,
hidden_states,
encoder_hidden_states=None,
attention_mask=None,
temporal_attention_mask=None,
kv_cache=None,
):
assert hidden_states.dim() == 5, f"Expected hidden_states to have ndim=5, but got ndim={hidden_states.dim()}."
video_length = hidden_states.shape[2]
hidden_states = rearrange(hidden_states, "b c f h w -> (b f) c h w")
batch, channel, height, width = hidden_states.shape
residual = hidden_states
hidden_states = self.norm(hidden_states)
inner_dim = hidden_states.shape[1]
hidden_states = hidden_states.permute(0, 2, 3, 1).reshape(batch, height * width, inner_dim)
hidden_states = self.proj_in(hidden_states)
# Transformer Blocks
for block in self.transformer_blocks:
hidden_states = block(
hidden_states,
encoder_hidden_states=encoder_hidden_states,
video_length=video_length,
height=height,
width=width,
temporal_attention_mask=temporal_attention_mask,
kv_cache=kv_cache,
)
# output
hidden_states = self.proj_out(hidden_states)
hidden_states = hidden_states.reshape(batch, height, width, inner_dim).permute(0, 3, 1, 2).contiguous()
output = hidden_states + residual
output = rearrange(output, "(b f) c h w -> b c f h w", f=video_length)
return output
def forward_streaming(
self,
hidden_states,
encoder_hidden_states=None,
attention_mask=None,
temporal_attention_mask=None,
kv_cache=None,
pe_idx=None,
update_idx=None,
):
assert hidden_states.dim() == 5, f"Expected hidden_states to have ndim=5, but got ndim={hidden_states.dim()}."
video_length = hidden_states.shape[2]
hidden_states = rearrange(hidden_states, "b c f h w -> (b f) c h w")
batch, channel, height, width = hidden_states.shape
residual = hidden_states
hidden_states = self.norm(hidden_states)
inner_dim = hidden_states.shape[1]
hidden_states = hidden_states.permute(0, 2, 3, 1).reshape(batch, height * width, inner_dim)
hidden_states = self.proj_in(hidden_states)
# Transformer Blocks
for block in self.transformer_blocks:
hidden_states = block(
hidden_states,
encoder_hidden_states=encoder_hidden_states,
video_length=video_length,
height=height,
width=width,
temporal_attention_mask=temporal_attention_mask,
kv_cache=kv_cache,
pe_idx=pe_idx,
update_idx=update_idx,
)
# output
hidden_states = self.proj_out(hidden_states)
hidden_states = hidden_states.reshape(batch, height, width, inner_dim).permute(0, 3, 1, 2).contiguous()
output = hidden_states + residual
output = rearrange(output, "(b f) c h w -> b c f h w", f=video_length)
return output
class TemporalTransformerBlock(nn.Module):
def __init__(
self,
dim,
num_attention_heads,
attention_head_dim,
attention_block_types=(
"Temporal_Self",
"Temporal_Self",
),
dropout=0.0,
norm_num_groups=32,
cross_attention_dim=768,
activation_fn="geglu",
attention_bias=False,
upcast_attention=False,
cross_frame_attention_mode=None,
temporal_position_encoding=False,
temporal_position_encoding_max_len=32,
attention_class_name: str = "versatile",
attention_extra_args={},
enable_streaming=False,
):
super().__init__()
attention_blocks = []
norms = []
if attention_class_name == "versatile":
attention_cls = VersatileAttention
elif attention_class_name == "stream":
attention_cls = StreamTemporalAttention
assert enable_streaming, "StreamTemporalAttention can only used under streaming mode"
else:
raise ValueError(f"Do not support attention_cls: {attention_class_name}.")
for block_name in attention_block_types:
attention_blocks.append(
attention_cls(
attention_mode=block_name.split("_")[0],
cross_attention_dim=cross_attention_dim if block_name.endswith("_Cross") else None,
query_dim=dim,
heads=num_attention_heads,
dim_head=attention_head_dim,
dropout=dropout,
bias=attention_bias,
upcast_attention=upcast_attention,
cross_frame_attention_mode=cross_frame_attention_mode,
temporal_position_encoding=temporal_position_encoding,
temporal_position_encoding_max_len=temporal_position_encoding_max_len,
**attention_extra_args,
)
)
norms.append(nn.LayerNorm(dim))
self.attention_blocks = nn.ModuleList(attention_blocks)
self.norms = nn.ModuleList(norms)
self.ff = FeedForward(dim, dropout=dropout, activation_fn=activation_fn)
self.ff_norm = nn.LayerNorm(dim)
self.enable_streaming = enable_streaming
def forward(self, *args, **kwargs):
fwd_func = self.forward_streaming if self.enable_streaming else self.forward_orig
return fwd_func(*args, **kwargs)
def forward_orig(
self,
hidden_states,
encoder_hidden_states=None,
attention_mask=None,
video_length=None,
height=None,
width=None,
temporal_attention_mask=None,
kv_cache=None,
):
for attention_block, norm in zip(self.attention_blocks, self.norms):
norm_hidden_states = norm(hidden_states)
kv_cache_ = kv_cache[attention_block.motion_module_idx]
hidden_states = (
attention_block(
norm_hidden_states,
encoder_hidden_states=encoder_hidden_states if attention_block.is_cross_attention else None,
video_length=video_length,
height=height,
width=width,
temporal_attention_mask=temporal_attention_mask,
kv_cache=kv_cache_,
)
+ hidden_states
)
hidden_states = self.ff(self.ff_norm(hidden_states)) + hidden_states
output = hidden_states
return output
def forward_streaming(
self,
hidden_states,
encoder_hidden_states=None,
attention_mask=None,
video_length=None,
height=None,
width=None,
temporal_attention_mask=None,
kv_cache=None,
pe_idx=None,
update_idx=None,
):
for attention_block, norm in zip(self.attention_blocks, self.norms):
norm_hidden_states = norm(hidden_states)
kv_cache_ = kv_cache[attention_block.motion_module_idx]
hidden_states = (
attention_block(
norm_hidden_states,
encoder_hidden_states=encoder_hidden_states if attention_block.is_cross_attention else None,
video_length=video_length,
height=height,
width=width,
temporal_attention_mask=temporal_attention_mask,
kv_cache=kv_cache_,
pe_idx=pe_idx,
update_idx=update_idx,
)
+ hidden_states
)
hidden_states = self.ff(self.ff_norm(hidden_states)) + hidden_states
output = hidden_states
return output
class VersatileAttention(CrossAttention):
def __init__(
self,
attention_mode=None,
cross_frame_attention_mode=None,
temporal_position_encoding=False,
temporal_position_encoding_max_len=32,
stream_cache_mode=None,
*args,
**kwargs,
):
super().__init__(*args, **kwargs)
self.stream_cache_mode = stream_cache_mode
self.timestep = None
assert attention_mode in ["Temporal"]
self.attention_mode = self._orig_attention_mode = attention_mode
self.is_cross_attention = kwargs.get("cross_attention_dim", None) is not None
self.pos_encoder = PositionalEncoding(
kwargs["query_dim"], dropout=0.0, max_len=temporal_position_encoding_max_len
)
def extra_repr(self):
return f"(Module Info) Attention_Mode: {self.attention_mode}, Is_Cross_Attention: {self.is_cross_attention}"
def set_index(self, idx):
self.motion_module_idx = idx
def forward(
self,
hidden_states,
encoder_hidden_states=None,
attention_mask=None,
video_length=None,
kv_cache=None,
*args,
**kwargs,
):
batch_size_frame, sequence_length, _ = hidden_states.shape
d = hidden_states.shape[1]
hidden_states = rearrange(hidden_states, "(b f) d c -> (b d) f c", f=video_length)
if self.group_norm is not None:
hidden_states = self.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
encoder_hidden_states = encoder_hidden_states if encoder_hidden_states is not None else hidden_states
query = self.to_q(hidden_states)
key = self.to_k(encoder_hidden_states)
value = self.to_v(encoder_hidden_states)
kv_cache[0, :, :video_length, :] = key.clone()
kv_cache[1, :, :video_length, :] = value.clone()
pe = self.pos_encoder.pe[:, :video_length]
pe_q = self.to_q(pe)
pe_k = self.to_k(pe)
pe_v = self.to_v(pe)
query = query + pe_q
key = key + pe_k
value = value + pe_v
query = self.reshape_heads_to_batch_dim(query)
key = self.reshape_heads_to_batch_dim(key)
value = self.reshape_heads_to_batch_dim(value)
if attention_mask is not None:
attention_bias = attn_mask_to_bias(attention_mask)
if attention_bias.shape[-1] != query.shape[1]:
target_length = query.shape[1]
attention_bias = F.pad(attention_mask, (0, target_length), value=float("-inf"))
attention_bias = attention_bias.repeat_interleave(self.heads, dim=0)
attention_bias = attention_bias.to(query)
else:
attention_bias = None
hidden_states = self._memory_efficient_attention_pt20(query, key, value, attention_bias)
hidden_states = hidden_states.to(query.dtype)
# linear proj
hidden_states = self.to_out[0](hidden_states)
# dropout
hidden_states = self.to_out[1](hidden_states)
hidden_states = rearrange(hidden_states, "(b d) f c -> (b f) d c", d=d)
return hidden_states