Spaces:
Sleeping
Sleeping
File size: 18,133 Bytes
d16b52d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 |
# Adapted from https://github.com/guoyww/AnimateDiff
from dataclasses import dataclass
import torch
import torch.nn.functional as F
from diffusers.models.attention import FeedForward
from diffusers.utils import BaseOutput
from diffusers.utils.import_utils import is_xformers_available
from einops import rearrange
from torch import nn
from .attention import CrossAttention
from .positional_encoding import PositionalEncoding
from .resnet import zero_module
from .stream_motion_module import StreamTemporalAttention
def attn_mask_to_bias(attn_mask: torch.Tensor):
"""
Convert bool attention mask to float attention bias tensor.
"""
if attn_mask.dtype in [torch.float, torch.half]:
return attn_mask
elif attn_mask.dtype == torch.bool:
attn_bias = torch.zeros_like(attn_mask).float().masked_fill(attn_mask.logical_not(), float("-inf"))
return attn_bias
else:
raise TypeError("Only support float or bool tensor for attn_mask input. " f"But receive {type(attn_mask)}.")
@dataclass
class TemporalTransformer3DModelOutput(BaseOutput):
sample: torch.FloatTensor
if is_xformers_available():
import xformers
import xformers.ops
else:
xformers = None
def get_motion_module(
in_channels,
motion_module_type: str,
motion_module_kwargs: dict,
):
if motion_module_type == "Vanilla":
return VanillaTemporalModule(
in_channels=in_channels,
**motion_module_kwargs,
)
elif motion_module_type == "Streaming":
return VanillaTemporalModule(
in_channels=in_channels,
enable_streaming=True,
**motion_module_kwargs,
)
else:
raise ValueError
class VanillaTemporalModule(nn.Module):
def __init__(
self,
in_channels,
num_attention_heads=8,
num_transformer_block=2,
attention_block_types=("Temporal_Self", "Temporal_Self"),
cross_frame_attention_mode=None,
temporal_position_encoding=False,
temporal_position_encoding_max_len=32,
temporal_attention_dim_div=1,
# parameters for 3d conv
num_3d_conv_layers=0,
kernel_size=3,
down_up_sample=False,
zero_initialize=True,
attention_class_name="versatile",
attention_kwargs={},
enable_streaming=False,
*args,
**kwargs,
):
super().__init__()
self.temporal_transformer = TemporalTransformer3DModel(
in_channels=in_channels,
num_attention_heads=num_attention_heads,
attention_head_dim=in_channels // num_attention_heads // temporal_attention_dim_div,
num_layers=num_transformer_block,
attention_block_types=attention_block_types,
cross_frame_attention_mode=cross_frame_attention_mode,
temporal_position_encoding=temporal_position_encoding,
temporal_position_encoding_max_len=temporal_position_encoding_max_len,
attention_class_name=attention_class_name,
attention_kwargs=attention_kwargs,
enable_streaming=enable_streaming,
)
if zero_initialize:
self.temporal_transformer.proj_out = zero_module(self.temporal_transformer.proj_out)
self.enable_streaming = enable_streaming
def forward(self, *args, **kwargs):
fwd_fn = self.forward_streaming if self.enable_streaming else self.forward_orig
return fwd_fn(*args, **kwargs)
def forward_orig(
self,
input_tensor,
temb,
encoder_hidden_states,
attention_mask=None,
temporal_attention_mask=None,
kv_cache=None,
):
hidden_states = input_tensor
hidden_states = self.temporal_transformer(
hidden_states, encoder_hidden_states, attention_mask, temporal_attention_mask, kv_cache=kv_cache
)
output = hidden_states
return output
def forward_streaming(
self,
input_tensor,
temb,
encoder_hidden_states,
attention_mask=None,
temporal_attention_mask=None,
kv_cache=None,
pe_idx=None,
update_idx=None,
):
hidden_states = input_tensor
hidden_states = self.temporal_transformer(
hidden_states,
encoder_hidden_states,
attention_mask,
temporal_attention_mask,
kv_cache=kv_cache,
pe_idx=pe_idx,
update_idx=update_idx,
)
output = hidden_states
return output
class TemporalTransformer3DModel(nn.Module):
def __init__(
self,
in_channels,
num_attention_heads,
attention_head_dim,
num_layers,
attention_block_types=(
"Temporal_Self",
"Temporal_Self",
),
dropout=0.0,
norm_num_groups=32,
cross_attention_dim=1280,
activation_fn="geglu",
attention_bias=False,
upcast_attention=False,
cross_frame_attention_mode=None,
temporal_position_encoding=False,
temporal_position_encoding_max_len=32,
attention_class_name="versatile",
attention_kwargs={},
enable_streaming=False,
):
super().__init__()
inner_dim = num_attention_heads * attention_head_dim
self.norm = torch.nn.GroupNorm(num_groups=norm_num_groups, num_channels=in_channels, eps=1e-6, affine=True)
self.proj_in = nn.Linear(in_channels, inner_dim)
self.transformer_blocks = nn.ModuleList(
[
TemporalTransformerBlock(
dim=inner_dim,
num_attention_heads=num_attention_heads,
attention_head_dim=attention_head_dim,
attention_block_types=attention_block_types,
dropout=dropout,
norm_num_groups=norm_num_groups,
cross_attention_dim=cross_attention_dim,
activation_fn=activation_fn,
attention_bias=attention_bias,
upcast_attention=upcast_attention,
cross_frame_attention_mode=cross_frame_attention_mode,
temporal_position_encoding=temporal_position_encoding,
temporal_position_encoding_max_len=temporal_position_encoding_max_len,
attention_class_name=attention_class_name,
attention_extra_args=attention_kwargs,
enable_streaming=enable_streaming,
)
for d in range(num_layers)
]
)
self.proj_out = nn.Linear(inner_dim, in_channels)
self.enable_streaming = enable_streaming
def forward(self, *args, **kwargs):
fwd_fn = self.forward_streaming if self.enable_streaming else self.forward_orig
return fwd_fn(*args, **kwargs)
def forward_orig(
self,
hidden_states,
encoder_hidden_states=None,
attention_mask=None,
temporal_attention_mask=None,
kv_cache=None,
):
assert hidden_states.dim() == 5, f"Expected hidden_states to have ndim=5, but got ndim={hidden_states.dim()}."
video_length = hidden_states.shape[2]
hidden_states = rearrange(hidden_states, "b c f h w -> (b f) c h w")
batch, channel, height, width = hidden_states.shape
residual = hidden_states
hidden_states = self.norm(hidden_states)
inner_dim = hidden_states.shape[1]
hidden_states = hidden_states.permute(0, 2, 3, 1).reshape(batch, height * width, inner_dim)
hidden_states = self.proj_in(hidden_states)
# Transformer Blocks
for block in self.transformer_blocks:
hidden_states = block(
hidden_states,
encoder_hidden_states=encoder_hidden_states,
video_length=video_length,
height=height,
width=width,
temporal_attention_mask=temporal_attention_mask,
kv_cache=kv_cache,
)
# output
hidden_states = self.proj_out(hidden_states)
hidden_states = hidden_states.reshape(batch, height, width, inner_dim).permute(0, 3, 1, 2).contiguous()
output = hidden_states + residual
output = rearrange(output, "(b f) c h w -> b c f h w", f=video_length)
return output
def forward_streaming(
self,
hidden_states,
encoder_hidden_states=None,
attention_mask=None,
temporal_attention_mask=None,
kv_cache=None,
pe_idx=None,
update_idx=None,
):
assert hidden_states.dim() == 5, f"Expected hidden_states to have ndim=5, but got ndim={hidden_states.dim()}."
video_length = hidden_states.shape[2]
hidden_states = rearrange(hidden_states, "b c f h w -> (b f) c h w")
batch, channel, height, width = hidden_states.shape
residual = hidden_states
hidden_states = self.norm(hidden_states)
inner_dim = hidden_states.shape[1]
hidden_states = hidden_states.permute(0, 2, 3, 1).reshape(batch, height * width, inner_dim)
hidden_states = self.proj_in(hidden_states)
# Transformer Blocks
for block in self.transformer_blocks:
hidden_states = block(
hidden_states,
encoder_hidden_states=encoder_hidden_states,
video_length=video_length,
height=height,
width=width,
temporal_attention_mask=temporal_attention_mask,
kv_cache=kv_cache,
pe_idx=pe_idx,
update_idx=update_idx,
)
# output
hidden_states = self.proj_out(hidden_states)
hidden_states = hidden_states.reshape(batch, height, width, inner_dim).permute(0, 3, 1, 2).contiguous()
output = hidden_states + residual
output = rearrange(output, "(b f) c h w -> b c f h w", f=video_length)
return output
class TemporalTransformerBlock(nn.Module):
def __init__(
self,
dim,
num_attention_heads,
attention_head_dim,
attention_block_types=(
"Temporal_Self",
"Temporal_Self",
),
dropout=0.0,
norm_num_groups=32,
cross_attention_dim=768,
activation_fn="geglu",
attention_bias=False,
upcast_attention=False,
cross_frame_attention_mode=None,
temporal_position_encoding=False,
temporal_position_encoding_max_len=32,
attention_class_name: str = "versatile",
attention_extra_args={},
enable_streaming=False,
):
super().__init__()
attention_blocks = []
norms = []
if attention_class_name == "versatile":
attention_cls = VersatileAttention
elif attention_class_name == "stream":
attention_cls = StreamTemporalAttention
assert enable_streaming, "StreamTemporalAttention can only used under streaming mode"
else:
raise ValueError(f"Do not support attention_cls: {attention_class_name}.")
for block_name in attention_block_types:
attention_blocks.append(
attention_cls(
attention_mode=block_name.split("_")[0],
cross_attention_dim=cross_attention_dim if block_name.endswith("_Cross") else None,
query_dim=dim,
heads=num_attention_heads,
dim_head=attention_head_dim,
dropout=dropout,
bias=attention_bias,
upcast_attention=upcast_attention,
cross_frame_attention_mode=cross_frame_attention_mode,
temporal_position_encoding=temporal_position_encoding,
temporal_position_encoding_max_len=temporal_position_encoding_max_len,
**attention_extra_args,
)
)
norms.append(nn.LayerNorm(dim))
self.attention_blocks = nn.ModuleList(attention_blocks)
self.norms = nn.ModuleList(norms)
self.ff = FeedForward(dim, dropout=dropout, activation_fn=activation_fn)
self.ff_norm = nn.LayerNorm(dim)
self.enable_streaming = enable_streaming
def forward(self, *args, **kwargs):
fwd_func = self.forward_streaming if self.enable_streaming else self.forward_orig
return fwd_func(*args, **kwargs)
def forward_orig(
self,
hidden_states,
encoder_hidden_states=None,
attention_mask=None,
video_length=None,
height=None,
width=None,
temporal_attention_mask=None,
kv_cache=None,
):
for attention_block, norm in zip(self.attention_blocks, self.norms):
norm_hidden_states = norm(hidden_states)
kv_cache_ = kv_cache[attention_block.motion_module_idx]
hidden_states = (
attention_block(
norm_hidden_states,
encoder_hidden_states=encoder_hidden_states if attention_block.is_cross_attention else None,
video_length=video_length,
height=height,
width=width,
temporal_attention_mask=temporal_attention_mask,
kv_cache=kv_cache_,
)
+ hidden_states
)
hidden_states = self.ff(self.ff_norm(hidden_states)) + hidden_states
output = hidden_states
return output
def forward_streaming(
self,
hidden_states,
encoder_hidden_states=None,
attention_mask=None,
video_length=None,
height=None,
width=None,
temporal_attention_mask=None,
kv_cache=None,
pe_idx=None,
update_idx=None,
):
for attention_block, norm in zip(self.attention_blocks, self.norms):
norm_hidden_states = norm(hidden_states)
kv_cache_ = kv_cache[attention_block.motion_module_idx]
hidden_states = (
attention_block(
norm_hidden_states,
encoder_hidden_states=encoder_hidden_states if attention_block.is_cross_attention else None,
video_length=video_length,
height=height,
width=width,
temporal_attention_mask=temporal_attention_mask,
kv_cache=kv_cache_,
pe_idx=pe_idx,
update_idx=update_idx,
)
+ hidden_states
)
hidden_states = self.ff(self.ff_norm(hidden_states)) + hidden_states
output = hidden_states
return output
class VersatileAttention(CrossAttention):
def __init__(
self,
attention_mode=None,
cross_frame_attention_mode=None,
temporal_position_encoding=False,
temporal_position_encoding_max_len=32,
stream_cache_mode=None,
*args,
**kwargs,
):
super().__init__(*args, **kwargs)
self.stream_cache_mode = stream_cache_mode
self.timestep = None
assert attention_mode in ["Temporal"]
self.attention_mode = self._orig_attention_mode = attention_mode
self.is_cross_attention = kwargs.get("cross_attention_dim", None) is not None
self.pos_encoder = PositionalEncoding(
kwargs["query_dim"], dropout=0.0, max_len=temporal_position_encoding_max_len
)
def extra_repr(self):
return f"(Module Info) Attention_Mode: {self.attention_mode}, Is_Cross_Attention: {self.is_cross_attention}"
def set_index(self, idx):
self.motion_module_idx = idx
def forward(
self,
hidden_states,
encoder_hidden_states=None,
attention_mask=None,
video_length=None,
kv_cache=None,
*args,
**kwargs,
):
batch_size_frame, sequence_length, _ = hidden_states.shape
d = hidden_states.shape[1]
hidden_states = rearrange(hidden_states, "(b f) d c -> (b d) f c", f=video_length)
if self.group_norm is not None:
hidden_states = self.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
encoder_hidden_states = encoder_hidden_states if encoder_hidden_states is not None else hidden_states
query = self.to_q(hidden_states)
key = self.to_k(encoder_hidden_states)
value = self.to_v(encoder_hidden_states)
kv_cache[0, :, :video_length, :] = key.clone()
kv_cache[1, :, :video_length, :] = value.clone()
pe = self.pos_encoder.pe[:, :video_length]
pe_q = self.to_q(pe)
pe_k = self.to_k(pe)
pe_v = self.to_v(pe)
query = query + pe_q
key = key + pe_k
value = value + pe_v
query = self.reshape_heads_to_batch_dim(query)
key = self.reshape_heads_to_batch_dim(key)
value = self.reshape_heads_to_batch_dim(value)
if attention_mask is not None:
attention_bias = attn_mask_to_bias(attention_mask)
if attention_bias.shape[-1] != query.shape[1]:
target_length = query.shape[1]
attention_bias = F.pad(attention_mask, (0, target_length), value=float("-inf"))
attention_bias = attention_bias.repeat_interleave(self.heads, dim=0)
attention_bias = attention_bias.to(query)
else:
attention_bias = None
hidden_states = self._memory_efficient_attention_pt20(query, key, value, attention_bias)
hidden_states = hidden_states.to(query.dtype)
# linear proj
hidden_states = self.to_out[0](hidden_states)
# dropout
hidden_states = self.to_out[1](hidden_states)
hidden_states = rearrange(hidden_states, "(b d) f c -> (b f) d c", d=d)
return hidden_states
|