File size: 18,133 Bytes
d16b52d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
# Adapted from https://github.com/guoyww/AnimateDiff
from dataclasses import dataclass

import torch
import torch.nn.functional as F
from diffusers.models.attention import FeedForward
from diffusers.utils import BaseOutput
from diffusers.utils.import_utils import is_xformers_available
from einops import rearrange
from torch import nn

from .attention import CrossAttention
from .positional_encoding import PositionalEncoding
from .resnet import zero_module
from .stream_motion_module import StreamTemporalAttention


def attn_mask_to_bias(attn_mask: torch.Tensor):
    """
    Convert bool attention mask to float attention bias tensor.
    """
    if attn_mask.dtype in [torch.float, torch.half]:
        return attn_mask
    elif attn_mask.dtype == torch.bool:
        attn_bias = torch.zeros_like(attn_mask).float().masked_fill(attn_mask.logical_not(), float("-inf"))
        return attn_bias
    else:
        raise TypeError("Only support float or bool tensor for attn_mask input. " f"But receive {type(attn_mask)}.")


@dataclass
class TemporalTransformer3DModelOutput(BaseOutput):
    sample: torch.FloatTensor


if is_xformers_available():
    import xformers
    import xformers.ops
else:
    xformers = None


def get_motion_module(
    in_channels,
    motion_module_type: str,
    motion_module_kwargs: dict,
):
    if motion_module_type == "Vanilla":
        return VanillaTemporalModule(
            in_channels=in_channels,
            **motion_module_kwargs,
        )
    elif motion_module_type == "Streaming":
        return VanillaTemporalModule(
            in_channels=in_channels,
            enable_streaming=True,
            **motion_module_kwargs,
        )
    else:
        raise ValueError


class VanillaTemporalModule(nn.Module):
    def __init__(
        self,
        in_channels,
        num_attention_heads=8,
        num_transformer_block=2,
        attention_block_types=("Temporal_Self", "Temporal_Self"),
        cross_frame_attention_mode=None,
        temporal_position_encoding=False,
        temporal_position_encoding_max_len=32,
        temporal_attention_dim_div=1,
        # parameters for 3d conv
        num_3d_conv_layers=0,
        kernel_size=3,
        down_up_sample=False,
        zero_initialize=True,
        attention_class_name="versatile",
        attention_kwargs={},
        enable_streaming=False,
        *args,
        **kwargs,
    ):
        super().__init__()

        self.temporal_transformer = TemporalTransformer3DModel(
            in_channels=in_channels,
            num_attention_heads=num_attention_heads,
            attention_head_dim=in_channels // num_attention_heads // temporal_attention_dim_div,
            num_layers=num_transformer_block,
            attention_block_types=attention_block_types,
            cross_frame_attention_mode=cross_frame_attention_mode,
            temporal_position_encoding=temporal_position_encoding,
            temporal_position_encoding_max_len=temporal_position_encoding_max_len,
            attention_class_name=attention_class_name,
            attention_kwargs=attention_kwargs,
            enable_streaming=enable_streaming,
        )

        if zero_initialize:
            self.temporal_transformer.proj_out = zero_module(self.temporal_transformer.proj_out)

        self.enable_streaming = enable_streaming

    def forward(self, *args, **kwargs):
        fwd_fn = self.forward_streaming if self.enable_streaming else self.forward_orig
        return fwd_fn(*args, **kwargs)

    def forward_orig(
        self,
        input_tensor,
        temb,
        encoder_hidden_states,
        attention_mask=None,
        temporal_attention_mask=None,
        kv_cache=None,
    ):
        hidden_states = input_tensor
        hidden_states = self.temporal_transformer(
            hidden_states, encoder_hidden_states, attention_mask, temporal_attention_mask, kv_cache=kv_cache
        )

        output = hidden_states
        return output

    def forward_streaming(
        self,
        input_tensor,
        temb,
        encoder_hidden_states,
        attention_mask=None,
        temporal_attention_mask=None,
        kv_cache=None,
        pe_idx=None,
        update_idx=None,
    ):
        hidden_states = input_tensor
        hidden_states = self.temporal_transformer(
            hidden_states,
            encoder_hidden_states,
            attention_mask,
            temporal_attention_mask,
            kv_cache=kv_cache,
            pe_idx=pe_idx,
            update_idx=update_idx,
        )

        output = hidden_states
        return output


class TemporalTransformer3DModel(nn.Module):
    def __init__(
        self,
        in_channels,
        num_attention_heads,
        attention_head_dim,
        num_layers,
        attention_block_types=(
            "Temporal_Self",
            "Temporal_Self",
        ),
        dropout=0.0,
        norm_num_groups=32,
        cross_attention_dim=1280,
        activation_fn="geglu",
        attention_bias=False,
        upcast_attention=False,
        cross_frame_attention_mode=None,
        temporal_position_encoding=False,
        temporal_position_encoding_max_len=32,
        attention_class_name="versatile",
        attention_kwargs={},
        enable_streaming=False,
    ):
        super().__init__()

        inner_dim = num_attention_heads * attention_head_dim

        self.norm = torch.nn.GroupNorm(num_groups=norm_num_groups, num_channels=in_channels, eps=1e-6, affine=True)
        self.proj_in = nn.Linear(in_channels, inner_dim)

        self.transformer_blocks = nn.ModuleList(
            [
                TemporalTransformerBlock(
                    dim=inner_dim,
                    num_attention_heads=num_attention_heads,
                    attention_head_dim=attention_head_dim,
                    attention_block_types=attention_block_types,
                    dropout=dropout,
                    norm_num_groups=norm_num_groups,
                    cross_attention_dim=cross_attention_dim,
                    activation_fn=activation_fn,
                    attention_bias=attention_bias,
                    upcast_attention=upcast_attention,
                    cross_frame_attention_mode=cross_frame_attention_mode,
                    temporal_position_encoding=temporal_position_encoding,
                    temporal_position_encoding_max_len=temporal_position_encoding_max_len,
                    attention_class_name=attention_class_name,
                    attention_extra_args=attention_kwargs,
                    enable_streaming=enable_streaming,
                )
                for d in range(num_layers)
            ]
        )
        self.proj_out = nn.Linear(inner_dim, in_channels)

        self.enable_streaming = enable_streaming

    def forward(self, *args, **kwargs):
        fwd_fn = self.forward_streaming if self.enable_streaming else self.forward_orig
        return fwd_fn(*args, **kwargs)

    def forward_orig(
        self,
        hidden_states,
        encoder_hidden_states=None,
        attention_mask=None,
        temporal_attention_mask=None,
        kv_cache=None,
    ):
        assert hidden_states.dim() == 5, f"Expected hidden_states to have ndim=5, but got ndim={hidden_states.dim()}."
        video_length = hidden_states.shape[2]
        hidden_states = rearrange(hidden_states, "b c f h w -> (b f) c h w")

        batch, channel, height, width = hidden_states.shape
        residual = hidden_states

        hidden_states = self.norm(hidden_states)
        inner_dim = hidden_states.shape[1]
        hidden_states = hidden_states.permute(0, 2, 3, 1).reshape(batch, height * width, inner_dim)
        hidden_states = self.proj_in(hidden_states)

        # Transformer Blocks
        for block in self.transformer_blocks:
            hidden_states = block(
                hidden_states,
                encoder_hidden_states=encoder_hidden_states,
                video_length=video_length,
                height=height,
                width=width,
                temporal_attention_mask=temporal_attention_mask,
                kv_cache=kv_cache,
            )

        # output
        hidden_states = self.proj_out(hidden_states)
        hidden_states = hidden_states.reshape(batch, height, width, inner_dim).permute(0, 3, 1, 2).contiguous()

        output = hidden_states + residual
        output = rearrange(output, "(b f) c h w -> b c f h w", f=video_length)

        return output

    def forward_streaming(
        self,
        hidden_states,
        encoder_hidden_states=None,
        attention_mask=None,
        temporal_attention_mask=None,
        kv_cache=None,
        pe_idx=None,
        update_idx=None,
    ):
        assert hidden_states.dim() == 5, f"Expected hidden_states to have ndim=5, but got ndim={hidden_states.dim()}."
        video_length = hidden_states.shape[2]
        hidden_states = rearrange(hidden_states, "b c f h w -> (b f) c h w")

        batch, channel, height, width = hidden_states.shape
        residual = hidden_states

        hidden_states = self.norm(hidden_states)
        inner_dim = hidden_states.shape[1]
        hidden_states = hidden_states.permute(0, 2, 3, 1).reshape(batch, height * width, inner_dim)
        hidden_states = self.proj_in(hidden_states)

        # Transformer Blocks
        for block in self.transformer_blocks:
            hidden_states = block(
                hidden_states,
                encoder_hidden_states=encoder_hidden_states,
                video_length=video_length,
                height=height,
                width=width,
                temporal_attention_mask=temporal_attention_mask,
                kv_cache=kv_cache,
                pe_idx=pe_idx,
                update_idx=update_idx,
            )

        # output
        hidden_states = self.proj_out(hidden_states)
        hidden_states = hidden_states.reshape(batch, height, width, inner_dim).permute(0, 3, 1, 2).contiguous()

        output = hidden_states + residual
        output = rearrange(output, "(b f) c h w -> b c f h w", f=video_length)

        return output


class TemporalTransformerBlock(nn.Module):
    def __init__(
        self,
        dim,
        num_attention_heads,
        attention_head_dim,
        attention_block_types=(
            "Temporal_Self",
            "Temporal_Self",
        ),
        dropout=0.0,
        norm_num_groups=32,
        cross_attention_dim=768,
        activation_fn="geglu",
        attention_bias=False,
        upcast_attention=False,
        cross_frame_attention_mode=None,
        temporal_position_encoding=False,
        temporal_position_encoding_max_len=32,
        attention_class_name: str = "versatile",
        attention_extra_args={},
        enable_streaming=False,
    ):
        super().__init__()

        attention_blocks = []
        norms = []

        if attention_class_name == "versatile":
            attention_cls = VersatileAttention
        elif attention_class_name == "stream":
            attention_cls = StreamTemporalAttention
            assert enable_streaming, "StreamTemporalAttention can only used under streaming mode"
        else:
            raise ValueError(f"Do not support attention_cls: {attention_class_name}.")

        for block_name in attention_block_types:
            attention_blocks.append(
                attention_cls(
                    attention_mode=block_name.split("_")[0],
                    cross_attention_dim=cross_attention_dim if block_name.endswith("_Cross") else None,
                    query_dim=dim,
                    heads=num_attention_heads,
                    dim_head=attention_head_dim,
                    dropout=dropout,
                    bias=attention_bias,
                    upcast_attention=upcast_attention,
                    cross_frame_attention_mode=cross_frame_attention_mode,
                    temporal_position_encoding=temporal_position_encoding,
                    temporal_position_encoding_max_len=temporal_position_encoding_max_len,
                    **attention_extra_args,
                )
            )
            norms.append(nn.LayerNorm(dim))

        self.attention_blocks = nn.ModuleList(attention_blocks)
        self.norms = nn.ModuleList(norms)

        self.ff = FeedForward(dim, dropout=dropout, activation_fn=activation_fn)
        self.ff_norm = nn.LayerNorm(dim)

        self.enable_streaming = enable_streaming

    def forward(self, *args, **kwargs):
        fwd_func = self.forward_streaming if self.enable_streaming else self.forward_orig
        return fwd_func(*args, **kwargs)

    def forward_orig(
        self,
        hidden_states,
        encoder_hidden_states=None,
        attention_mask=None,
        video_length=None,
        height=None,
        width=None,
        temporal_attention_mask=None,
        kv_cache=None,
    ):
        for attention_block, norm in zip(self.attention_blocks, self.norms):
            norm_hidden_states = norm(hidden_states)
            kv_cache_ = kv_cache[attention_block.motion_module_idx]
            hidden_states = (
                attention_block(
                    norm_hidden_states,
                    encoder_hidden_states=encoder_hidden_states if attention_block.is_cross_attention else None,
                    video_length=video_length,
                    height=height,
                    width=width,
                    temporal_attention_mask=temporal_attention_mask,
                    kv_cache=kv_cache_,
                )
                + hidden_states
            )

        hidden_states = self.ff(self.ff_norm(hidden_states)) + hidden_states

        output = hidden_states
        return output

    def forward_streaming(
        self,
        hidden_states,
        encoder_hidden_states=None,
        attention_mask=None,
        video_length=None,
        height=None,
        width=None,
        temporal_attention_mask=None,
        kv_cache=None,
        pe_idx=None,
        update_idx=None,
    ):
        for attention_block, norm in zip(self.attention_blocks, self.norms):
            norm_hidden_states = norm(hidden_states)
            kv_cache_ = kv_cache[attention_block.motion_module_idx]
            hidden_states = (
                attention_block(
                    norm_hidden_states,
                    encoder_hidden_states=encoder_hidden_states if attention_block.is_cross_attention else None,
                    video_length=video_length,
                    height=height,
                    width=width,
                    temporal_attention_mask=temporal_attention_mask,
                    kv_cache=kv_cache_,
                    pe_idx=pe_idx,
                    update_idx=update_idx,
                )
                + hidden_states
            )

        hidden_states = self.ff(self.ff_norm(hidden_states)) + hidden_states

        output = hidden_states
        return output


class VersatileAttention(CrossAttention):
    def __init__(
        self,
        attention_mode=None,
        cross_frame_attention_mode=None,
        temporal_position_encoding=False,
        temporal_position_encoding_max_len=32,
        stream_cache_mode=None,
        *args,
        **kwargs,
    ):
        super().__init__(*args, **kwargs)

        self.stream_cache_mode = stream_cache_mode
        self.timestep = None

        assert attention_mode in ["Temporal"]

        self.attention_mode = self._orig_attention_mode = attention_mode
        self.is_cross_attention = kwargs.get("cross_attention_dim", None) is not None

        self.pos_encoder = PositionalEncoding(
            kwargs["query_dim"], dropout=0.0, max_len=temporal_position_encoding_max_len
        )

    def extra_repr(self):
        return f"(Module Info) Attention_Mode: {self.attention_mode}, Is_Cross_Attention: {self.is_cross_attention}"

    def set_index(self, idx):
        self.motion_module_idx = idx

    def forward(
        self,
        hidden_states,
        encoder_hidden_states=None,
        attention_mask=None,
        video_length=None,
        kv_cache=None,
        *args,
        **kwargs,
    ):
        batch_size_frame, sequence_length, _ = hidden_states.shape

        d = hidden_states.shape[1]
        hidden_states = rearrange(hidden_states, "(b f) d c -> (b d) f c", f=video_length)

        if self.group_norm is not None:
            hidden_states = self.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
        encoder_hidden_states = encoder_hidden_states if encoder_hidden_states is not None else hidden_states

        query = self.to_q(hidden_states)
        key = self.to_k(encoder_hidden_states)
        value = self.to_v(encoder_hidden_states)

        kv_cache[0, :, :video_length, :] = key.clone()
        kv_cache[1, :, :video_length, :] = value.clone()

        pe = self.pos_encoder.pe[:, :video_length]

        pe_q = self.to_q(pe)
        pe_k = self.to_k(pe)
        pe_v = self.to_v(pe)

        query = query + pe_q
        key = key + pe_k
        value = value + pe_v

        query = self.reshape_heads_to_batch_dim(query)
        key = self.reshape_heads_to_batch_dim(key)
        value = self.reshape_heads_to_batch_dim(value)

        if attention_mask is not None:
            attention_bias = attn_mask_to_bias(attention_mask)
            if attention_bias.shape[-1] != query.shape[1]:
                target_length = query.shape[1]
                attention_bias = F.pad(attention_mask, (0, target_length), value=float("-inf"))
                attention_bias = attention_bias.repeat_interleave(self.heads, dim=0)
            attention_bias = attention_bias.to(query)
        else:
            attention_bias = None

        hidden_states = self._memory_efficient_attention_pt20(query, key, value, attention_bias)
        hidden_states = hidden_states.to(query.dtype)

        # linear proj
        hidden_states = self.to_out[0](hidden_states)

        # dropout
        hidden_states = self.to_out[1](hidden_states)

        hidden_states = rearrange(hidden_states, "(b d) f c -> (b f) d c", d=d)

        return hidden_states