leoxing1996
add midas manually
b18cfd3
## Towards Robust Monocular Depth Estimation: Mixing Datasets for Zero-shot Cross-dataset Transfer
### TensorFlow inference using `.pb` and `.onnx` models
1. [Run inference on TensorFlow-model by using TensorFlow](#run-inference-on-tensorflow-model-by-using-tensorFlow)
2. [Run inference on ONNX-model by using TensorFlow](#run-inference-on-onnx-model-by-using-tensorflow)
3. [Make ONNX model from downloaded Pytorch model file](#make-onnx-model-from-downloaded-pytorch-model-file)
### Run inference on TensorFlow-model by using TensorFlow
1) Download the model weights [model-f6b98070.pb](https://github.com/intel-isl/MiDaS/releases/download/v2_1/model-f6b98070.pb)
and [model-small.pb](https://github.com/intel-isl/MiDaS/releases/download/v2_1/model-small.pb) and place the
file in the `/tf/` folder.
2) Set up dependencies:
```shell
# install OpenCV
pip install --upgrade pip
pip install opencv-python
# install TensorFlow
pip install -I grpcio tensorflow==2.3.0 tensorflow-addons==0.11.2 numpy==1.18.0
```
#### Usage
1) Place one or more input images in the folder `tf/input`.
2) Run the model:
```shell
python tf/run_pb.py
```
Or run the small model:
```shell
python tf/run_pb.py --model_weights model-small.pb --model_type small
```
3) The resulting inverse depth maps are written to the `tf/output` folder.
### Run inference on ONNX-model by using ONNX-Runtime
1) Download the model weights [model-f6b98070.onnx](https://github.com/intel-isl/MiDaS/releases/download/v2_1/model-f6b98070.onnx)
and [model-small.onnx](https://github.com/intel-isl/MiDaS/releases/download/v2_1/model-small.onnx) and place the
file in the `/tf/` folder.
2) Set up dependencies:
```shell
# install OpenCV
pip install --upgrade pip
pip install opencv-python
# install ONNX
pip install onnx==1.7.0
# install ONNX Runtime
pip install onnxruntime==1.5.2
```
#### Usage
1) Place one or more input images in the folder `tf/input`.
2) Run the model:
```shell
python tf/run_onnx.py
```
Or run the small model:
```shell
python tf/run_onnx.py --model_weights model-small.onnx --model_type small
```
3) The resulting inverse depth maps are written to the `tf/output` folder.
### Make ONNX model from downloaded Pytorch model file
1) Download the model weights [model-f6b98070.pt](https://github.com/intel-isl/MiDaS/releases/download/v2_1/model-f6b98070.pt) and place the
file in the root folder.
2) Set up dependencies:
```shell
# install OpenCV
pip install --upgrade pip
pip install opencv-python
# install PyTorch TorchVision
pip install -I torch==1.7.0 torchvision==0.8.0
# install TensorFlow
pip install -I grpcio tensorflow==2.3.0 tensorflow-addons==0.11.2 numpy==1.18.0
# install ONNX
pip install onnx==1.7.0
# install ONNX-TensorFlow
git clone https://github.com/onnx/onnx-tensorflow.git
cd onnx-tensorflow
git checkout 095b51b88e35c4001d70f15f80f31014b592b81e
pip install -e .
```
#### Usage
1) Run the converter:
```shell
python tf/make_onnx_model.py
```
2) The resulting `model-f6b98070.onnx` file is written to the `/tf/` folder.
### Requirements
The code was tested with Python 3.6.9, PyTorch 1.5.1, TensorFlow 2.2.0, TensorFlow-addons 0.8.3, ONNX 1.7.0, ONNX-TensorFlow (GitHub-master-17.07.2020) and OpenCV 4.3.0.
### Citation
Please cite our paper if you use this code or any of the models:
```
@article{Ranftl2019,
author = {Ren\'{e} Ranftl and Katrin Lasinger and David Hafner and Konrad Schindler and Vladlen Koltun},
title = {Towards Robust Monocular Depth Estimation: Mixing Datasets for Zero-shot Cross-dataset Transfer},
journal = {IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI)},
year = {2020},
}
```
### License
MIT License