Spaces:
Sleeping
Sleeping
import torch | |
import torch.nn as nn | |
from .vit import ( | |
_make_pretrained_vitb_rn50_384, | |
_make_pretrained_vitl16_384, | |
_make_pretrained_vitb16_384, | |
forward_vit, | |
) | |
def _make_encoder(backbone, features, use_pretrained, groups=1, expand=False, exportable=True, hooks=None, use_vit_only=False, use_readout="ignore",): | |
if backbone == "vitl16_384": | |
pretrained = _make_pretrained_vitl16_384( | |
use_pretrained, hooks=hooks, use_readout=use_readout | |
) | |
scratch = _make_scratch( | |
[256, 512, 1024, 1024], features, groups=groups, expand=expand | |
) # ViT-L/16 - 85.0% Top1 (backbone) | |
elif backbone == "vitb_rn50_384": | |
pretrained = _make_pretrained_vitb_rn50_384( | |
use_pretrained, | |
hooks=hooks, | |
use_vit_only=use_vit_only, | |
use_readout=use_readout, | |
) | |
scratch = _make_scratch( | |
[256, 512, 768, 768], features, groups=groups, expand=expand | |
) # ViT-H/16 - 85.0% Top1 (backbone) | |
elif backbone == "vitb16_384": | |
pretrained = _make_pretrained_vitb16_384( | |
use_pretrained, hooks=hooks, use_readout=use_readout | |
) | |
scratch = _make_scratch( | |
[96, 192, 384, 768], features, groups=groups, expand=expand | |
) # ViT-B/16 - 84.6% Top1 (backbone) | |
elif backbone == "resnext101_wsl": | |
pretrained = _make_pretrained_resnext101_wsl(use_pretrained) | |
scratch = _make_scratch([256, 512, 1024, 2048], features, groups=groups, expand=expand) # efficientnet_lite3 | |
elif backbone == "efficientnet_lite3": | |
pretrained = _make_pretrained_efficientnet_lite3(use_pretrained, exportable=exportable) | |
scratch = _make_scratch([32, 48, 136, 384], features, groups=groups, expand=expand) # efficientnet_lite3 | |
else: | |
print(f"Backbone '{backbone}' not implemented") | |
assert False | |
return pretrained, scratch | |
def _make_scratch(in_shape, out_shape, groups=1, expand=False): | |
scratch = nn.Module() | |
out_shape1 = out_shape | |
out_shape2 = out_shape | |
out_shape3 = out_shape | |
out_shape4 = out_shape | |
if expand==True: | |
out_shape1 = out_shape | |
out_shape2 = out_shape*2 | |
out_shape3 = out_shape*4 | |
out_shape4 = out_shape*8 | |
scratch.layer1_rn = nn.Conv2d( | |
in_shape[0], out_shape1, kernel_size=3, stride=1, padding=1, bias=False, groups=groups | |
) | |
scratch.layer2_rn = nn.Conv2d( | |
in_shape[1], out_shape2, kernel_size=3, stride=1, padding=1, bias=False, groups=groups | |
) | |
scratch.layer3_rn = nn.Conv2d( | |
in_shape[2], out_shape3, kernel_size=3, stride=1, padding=1, bias=False, groups=groups | |
) | |
scratch.layer4_rn = nn.Conv2d( | |
in_shape[3], out_shape4, kernel_size=3, stride=1, padding=1, bias=False, groups=groups | |
) | |
return scratch | |
def _make_pretrained_efficientnet_lite3(use_pretrained, exportable=False): | |
efficientnet = torch.hub.load( | |
"rwightman/gen-efficientnet-pytorch", | |
"tf_efficientnet_lite3", | |
pretrained=use_pretrained, | |
exportable=exportable | |
) | |
return _make_efficientnet_backbone(efficientnet) | |
def _make_efficientnet_backbone(effnet): | |
pretrained = nn.Module() | |
pretrained.layer1 = nn.Sequential( | |
effnet.conv_stem, effnet.bn1, effnet.act1, *effnet.blocks[0:2] | |
) | |
pretrained.layer2 = nn.Sequential(*effnet.blocks[2:3]) | |
pretrained.layer3 = nn.Sequential(*effnet.blocks[3:5]) | |
pretrained.layer4 = nn.Sequential(*effnet.blocks[5:9]) | |
return pretrained | |
def _make_resnet_backbone(resnet): | |
pretrained = nn.Module() | |
pretrained.layer1 = nn.Sequential( | |
resnet.conv1, resnet.bn1, resnet.relu, resnet.maxpool, resnet.layer1 | |
) | |
pretrained.layer2 = resnet.layer2 | |
pretrained.layer3 = resnet.layer3 | |
pretrained.layer4 = resnet.layer4 | |
return pretrained | |
def _make_pretrained_resnext101_wsl(use_pretrained): | |
resnet = torch.hub.load("facebookresearch/WSL-Images", "resnext101_32x8d_wsl") | |
return _make_resnet_backbone(resnet) | |
class Interpolate(nn.Module): | |
"""Interpolation module. | |
""" | |
def __init__(self, scale_factor, mode, align_corners=False): | |
"""Init. | |
Args: | |
scale_factor (float): scaling | |
mode (str): interpolation mode | |
""" | |
super(Interpolate, self).__init__() | |
self.interp = nn.functional.interpolate | |
self.scale_factor = scale_factor | |
self.mode = mode | |
self.align_corners = align_corners | |
def forward(self, x): | |
"""Forward pass. | |
Args: | |
x (tensor): input | |
Returns: | |
tensor: interpolated data | |
""" | |
x = self.interp( | |
x, scale_factor=self.scale_factor, mode=self.mode, align_corners=self.align_corners | |
) | |
return x | |
class ResidualConvUnit(nn.Module): | |
"""Residual convolution module. | |
""" | |
def __init__(self, features): | |
"""Init. | |
Args: | |
features (int): number of features | |
""" | |
super().__init__() | |
self.conv1 = nn.Conv2d( | |
features, features, kernel_size=3, stride=1, padding=1, bias=True | |
) | |
self.conv2 = nn.Conv2d( | |
features, features, kernel_size=3, stride=1, padding=1, bias=True | |
) | |
self.relu = nn.ReLU(inplace=True) | |
def forward(self, x): | |
"""Forward pass. | |
Args: | |
x (tensor): input | |
Returns: | |
tensor: output | |
""" | |
out = self.relu(x) | |
out = self.conv1(out) | |
out = self.relu(out) | |
out = self.conv2(out) | |
return out + x | |
class FeatureFusionBlock(nn.Module): | |
"""Feature fusion block. | |
""" | |
def __init__(self, features): | |
"""Init. | |
Args: | |
features (int): number of features | |
""" | |
super(FeatureFusionBlock, self).__init__() | |
self.resConfUnit1 = ResidualConvUnit(features) | |
self.resConfUnit2 = ResidualConvUnit(features) | |
def forward(self, *xs): | |
"""Forward pass. | |
Returns: | |
tensor: output | |
""" | |
output = xs[0] | |
if len(xs) == 2: | |
output += self.resConfUnit1(xs[1]) | |
output = self.resConfUnit2(output) | |
output = nn.functional.interpolate( | |
output, scale_factor=2, mode="bilinear", align_corners=True | |
) | |
return output | |
class ResidualConvUnit_custom(nn.Module): | |
"""Residual convolution module. | |
""" | |
def __init__(self, features, activation, bn): | |
"""Init. | |
Args: | |
features (int): number of features | |
""" | |
super().__init__() | |
self.bn = bn | |
self.groups=1 | |
self.conv1 = nn.Conv2d( | |
features, features, kernel_size=3, stride=1, padding=1, bias=True, groups=self.groups | |
) | |
self.conv2 = nn.Conv2d( | |
features, features, kernel_size=3, stride=1, padding=1, bias=True, groups=self.groups | |
) | |
if self.bn==True: | |
self.bn1 = nn.BatchNorm2d(features) | |
self.bn2 = nn.BatchNorm2d(features) | |
self.activation = activation | |
self.skip_add = nn.quantized.FloatFunctional() | |
def forward(self, x): | |
"""Forward pass. | |
Args: | |
x (tensor): input | |
Returns: | |
tensor: output | |
""" | |
out = self.activation(x) | |
out = self.conv1(out) | |
if self.bn==True: | |
out = self.bn1(out) | |
out = self.activation(out) | |
out = self.conv2(out) | |
if self.bn==True: | |
out = self.bn2(out) | |
if self.groups > 1: | |
out = self.conv_merge(out) | |
return self.skip_add.add(out, x) | |
# return out + x | |
class FeatureFusionBlock_custom(nn.Module): | |
"""Feature fusion block. | |
""" | |
def __init__(self, features, activation, deconv=False, bn=False, expand=False, align_corners=True): | |
"""Init. | |
Args: | |
features (int): number of features | |
""" | |
super(FeatureFusionBlock_custom, self).__init__() | |
self.deconv = deconv | |
self.align_corners = align_corners | |
self.groups=1 | |
self.expand = expand | |
out_features = features | |
if self.expand==True: | |
out_features = features//2 | |
self.out_conv = nn.Conv2d(features, out_features, kernel_size=1, stride=1, padding=0, bias=True, groups=1) | |
self.resConfUnit1 = ResidualConvUnit_custom(features, activation, bn) | |
self.resConfUnit2 = ResidualConvUnit_custom(features, activation, bn) | |
self.skip_add = nn.quantized.FloatFunctional() | |
def forward(self, *xs): | |
"""Forward pass. | |
Returns: | |
tensor: output | |
""" | |
output = xs[0] | |
if len(xs) == 2: | |
res = self.resConfUnit1(xs[1]) | |
output = self.skip_add.add(output, res) | |
# output += res | |
output = self.resConfUnit2(output) | |
output = nn.functional.interpolate( | |
output, scale_factor=2, mode="bilinear", align_corners=self.align_corners | |
) | |
output = self.out_conv(output) | |
return output | |