File size: 9,242 Bytes
b18cfd3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
import torch
import torch.nn as nn

from .vit import (
    _make_pretrained_vitb_rn50_384,
    _make_pretrained_vitl16_384,
    _make_pretrained_vitb16_384,
    forward_vit,
)

def _make_encoder(backbone, features, use_pretrained, groups=1, expand=False, exportable=True, hooks=None, use_vit_only=False, use_readout="ignore",):
    if backbone == "vitl16_384":
        pretrained = _make_pretrained_vitl16_384(
            use_pretrained, hooks=hooks, use_readout=use_readout
        )
        scratch = _make_scratch(
            [256, 512, 1024, 1024], features, groups=groups, expand=expand
        )  # ViT-L/16 - 85.0% Top1 (backbone)
    elif backbone == "vitb_rn50_384":
        pretrained = _make_pretrained_vitb_rn50_384(
            use_pretrained,
            hooks=hooks,
            use_vit_only=use_vit_only,
            use_readout=use_readout,
        )
        scratch = _make_scratch(
            [256, 512, 768, 768], features, groups=groups, expand=expand
        )  # ViT-H/16 - 85.0% Top1 (backbone)
    elif backbone == "vitb16_384":
        pretrained = _make_pretrained_vitb16_384(
            use_pretrained, hooks=hooks, use_readout=use_readout
        )
        scratch = _make_scratch(
            [96, 192, 384, 768], features, groups=groups, expand=expand
        )  # ViT-B/16 - 84.6% Top1 (backbone)
    elif backbone == "resnext101_wsl":
        pretrained = _make_pretrained_resnext101_wsl(use_pretrained)
        scratch = _make_scratch([256, 512, 1024, 2048], features, groups=groups, expand=expand)     # efficientnet_lite3  
    elif backbone == "efficientnet_lite3":
        pretrained = _make_pretrained_efficientnet_lite3(use_pretrained, exportable=exportable)
        scratch = _make_scratch([32, 48, 136, 384], features, groups=groups, expand=expand)  # efficientnet_lite3     
    else:
        print(f"Backbone '{backbone}' not implemented")
        assert False
        
    return pretrained, scratch


def _make_scratch(in_shape, out_shape, groups=1, expand=False):
    scratch = nn.Module()

    out_shape1 = out_shape
    out_shape2 = out_shape
    out_shape3 = out_shape
    out_shape4 = out_shape
    if expand==True:
        out_shape1 = out_shape
        out_shape2 = out_shape*2
        out_shape3 = out_shape*4
        out_shape4 = out_shape*8

    scratch.layer1_rn = nn.Conv2d(
        in_shape[0], out_shape1, kernel_size=3, stride=1, padding=1, bias=False, groups=groups
    )
    scratch.layer2_rn = nn.Conv2d(
        in_shape[1], out_shape2, kernel_size=3, stride=1, padding=1, bias=False, groups=groups
    )
    scratch.layer3_rn = nn.Conv2d(
        in_shape[2], out_shape3, kernel_size=3, stride=1, padding=1, bias=False, groups=groups
    )
    scratch.layer4_rn = nn.Conv2d(
        in_shape[3], out_shape4, kernel_size=3, stride=1, padding=1, bias=False, groups=groups
    )

    return scratch


def _make_pretrained_efficientnet_lite3(use_pretrained, exportable=False):
    efficientnet = torch.hub.load(
        "rwightman/gen-efficientnet-pytorch",
        "tf_efficientnet_lite3",
        pretrained=use_pretrained,
        exportable=exportable
    )
    return _make_efficientnet_backbone(efficientnet)


def _make_efficientnet_backbone(effnet):
    pretrained = nn.Module()

    pretrained.layer1 = nn.Sequential(
        effnet.conv_stem, effnet.bn1, effnet.act1, *effnet.blocks[0:2]
    )
    pretrained.layer2 = nn.Sequential(*effnet.blocks[2:3])
    pretrained.layer3 = nn.Sequential(*effnet.blocks[3:5])
    pretrained.layer4 = nn.Sequential(*effnet.blocks[5:9])

    return pretrained
    

def _make_resnet_backbone(resnet):
    pretrained = nn.Module()
    pretrained.layer1 = nn.Sequential(
        resnet.conv1, resnet.bn1, resnet.relu, resnet.maxpool, resnet.layer1
    )

    pretrained.layer2 = resnet.layer2
    pretrained.layer3 = resnet.layer3
    pretrained.layer4 = resnet.layer4

    return pretrained


def _make_pretrained_resnext101_wsl(use_pretrained):
    resnet = torch.hub.load("facebookresearch/WSL-Images", "resnext101_32x8d_wsl")
    return _make_resnet_backbone(resnet)



class Interpolate(nn.Module):
    """Interpolation module.
    """

    def __init__(self, scale_factor, mode, align_corners=False):
        """Init.

        Args:
            scale_factor (float): scaling
            mode (str): interpolation mode
        """
        super(Interpolate, self).__init__()

        self.interp = nn.functional.interpolate
        self.scale_factor = scale_factor
        self.mode = mode
        self.align_corners = align_corners

    def forward(self, x):
        """Forward pass.

        Args:
            x (tensor): input

        Returns:
            tensor: interpolated data
        """

        x = self.interp(
            x, scale_factor=self.scale_factor, mode=self.mode, align_corners=self.align_corners
        )

        return x


class ResidualConvUnit(nn.Module):
    """Residual convolution module.
    """

    def __init__(self, features):
        """Init.

        Args:
            features (int): number of features
        """
        super().__init__()

        self.conv1 = nn.Conv2d(
            features, features, kernel_size=3, stride=1, padding=1, bias=True
        )

        self.conv2 = nn.Conv2d(
            features, features, kernel_size=3, stride=1, padding=1, bias=True
        )

        self.relu = nn.ReLU(inplace=True)

    def forward(self, x):
        """Forward pass.

        Args:
            x (tensor): input

        Returns:
            tensor: output
        """
        out = self.relu(x)
        out = self.conv1(out)
        out = self.relu(out)
        out = self.conv2(out)

        return out + x


class FeatureFusionBlock(nn.Module):
    """Feature fusion block.
    """

    def __init__(self, features):
        """Init.

        Args:
            features (int): number of features
        """
        super(FeatureFusionBlock, self).__init__()

        self.resConfUnit1 = ResidualConvUnit(features)
        self.resConfUnit2 = ResidualConvUnit(features)

    def forward(self, *xs):
        """Forward pass.

        Returns:
            tensor: output
        """
        output = xs[0]

        if len(xs) == 2:
            output += self.resConfUnit1(xs[1])

        output = self.resConfUnit2(output)

        output = nn.functional.interpolate(
            output, scale_factor=2, mode="bilinear", align_corners=True
        )

        return output




class ResidualConvUnit_custom(nn.Module):
    """Residual convolution module.
    """

    def __init__(self, features, activation, bn):
        """Init.

        Args:
            features (int): number of features
        """
        super().__init__()

        self.bn = bn

        self.groups=1

        self.conv1 = nn.Conv2d(
            features, features, kernel_size=3, stride=1, padding=1, bias=True, groups=self.groups
        )
        
        self.conv2 = nn.Conv2d(
            features, features, kernel_size=3, stride=1, padding=1, bias=True, groups=self.groups
        )

        if self.bn==True:
            self.bn1 = nn.BatchNorm2d(features)
            self.bn2 = nn.BatchNorm2d(features)

        self.activation = activation

        self.skip_add = nn.quantized.FloatFunctional()

    def forward(self, x):
        """Forward pass.

        Args:
            x (tensor): input

        Returns:
            tensor: output
        """
        
        out = self.activation(x)
        out = self.conv1(out)
        if self.bn==True:
            out = self.bn1(out)
       
        out = self.activation(out)
        out = self.conv2(out)
        if self.bn==True:
            out = self.bn2(out)

        if self.groups > 1:
            out = self.conv_merge(out)

        return self.skip_add.add(out, x)

        # return out + x


class FeatureFusionBlock_custom(nn.Module):
    """Feature fusion block.
    """

    def __init__(self, features, activation, deconv=False, bn=False, expand=False, align_corners=True):
        """Init.

        Args:
            features (int): number of features
        """
        super(FeatureFusionBlock_custom, self).__init__()

        self.deconv = deconv
        self.align_corners = align_corners

        self.groups=1

        self.expand = expand
        out_features = features
        if self.expand==True:
            out_features = features//2
        
        self.out_conv = nn.Conv2d(features, out_features, kernel_size=1, stride=1, padding=0, bias=True, groups=1)

        self.resConfUnit1 = ResidualConvUnit_custom(features, activation, bn)
        self.resConfUnit2 = ResidualConvUnit_custom(features, activation, bn)
        
        self.skip_add = nn.quantized.FloatFunctional()

    def forward(self, *xs):
        """Forward pass.

        Returns:
            tensor: output
        """
        output = xs[0]

        if len(xs) == 2:
            res = self.resConfUnit1(xs[1])
            output = self.skip_add.add(output, res)
            # output += res

        output = self.resConfUnit2(output)

        output = nn.functional.interpolate(
            output, scale_factor=2, mode="bilinear", align_corners=self.align_corners
        )

        output = self.out_conv(output)

        return output