|
from __future__ import annotations |
|
|
|
import numpy as np |
|
import torch |
|
import torch.nn.functional as F |
|
|
|
from ...utils.typing import * |
|
|
|
def dot(x, y): |
|
return torch.sum(x * y, -1, keepdim=True) |
|
|
|
class Mesh: |
|
def __init__( |
|
self, v_pos: Float[Tensor, "Nv 3"], t_pos_idx: Integer[Tensor, "Nf 3"], v_rgb: Integer[Tensor, "Nf 3"], **kwargs |
|
) -> None: |
|
self.v_pos: Float[Tensor, "Nv 3"] = v_pos |
|
self.t_pos_idx: Integer[Tensor, "Nf 3"] = t_pos_idx |
|
self.v_rgb: Optional[Float[Tensor, "Nv 3"]] = v_rgb |
|
|
|
self._v_nrm: Optional[Float[Tensor, "Nv 3"]] = None |
|
self._v_tng: Optional[Float[Tensor, "Nv 3"]] = None |
|
self._v_tex: Optional[Float[Tensor, "Nt 3"]] = None |
|
self._t_tex_idx: Optional[Float[Tensor, "Nf 3"]] = None |
|
|
|
self._edges: Optional[Integer[Tensor, "Ne 2"]] = None |
|
self.extras: Dict[str, Any] = {} |
|
for k, v in kwargs.items(): |
|
self.add_extra(k, v) |
|
|
|
def add_extra(self, k, v) -> None: |
|
self.extras[k] = v |
|
|
|
def remove_outlier(self, outlier_n_faces_threshold: Union[int, float]) -> Mesh: |
|
if self.requires_grad: |
|
print("Mesh is differentiable, not removing outliers") |
|
return self |
|
|
|
|
|
|
|
import trimesh |
|
|
|
|
|
mesh = trimesh.Trimesh( |
|
vertices=self.v_pos.detach().cpu().numpy(), |
|
faces=self.t_pos_idx.detach().cpu().numpy(), |
|
) |
|
|
|
|
|
components = mesh.split(only_watertight=False) |
|
|
|
print( |
|
"Mesh has {} components, with faces: {}".format( |
|
len(components), [c.faces.shape[0] for c in components] |
|
) |
|
) |
|
|
|
n_faces_threshold: int |
|
if isinstance(outlier_n_faces_threshold, float): |
|
|
|
n_faces_threshold = int( |
|
max([c.faces.shape[0] for c in components]) * outlier_n_faces_threshold |
|
) |
|
else: |
|
|
|
n_faces_threshold = outlier_n_faces_threshold |
|
|
|
|
|
print( |
|
"Removing components with less than {} faces".format(n_faces_threshold) |
|
) |
|
|
|
|
|
components = [c for c in components if c.faces.shape[0] >= n_faces_threshold] |
|
|
|
|
|
print( |
|
"Mesh has {} components after removing outliers, with faces: {}".format( |
|
len(components), [c.faces.shape[0] for c in components] |
|
) |
|
) |
|
|
|
mesh = trimesh.util.concatenate(components) |
|
|
|
|
|
v_pos = torch.from_numpy(mesh.vertices).to(self.v_pos) |
|
t_pos_idx = torch.from_numpy(mesh.faces).to(self.t_pos_idx) |
|
|
|
clean_mesh = Mesh(v_pos, t_pos_idx) |
|
|
|
|
|
if len(self.extras) > 0: |
|
clean_mesh.extras = self.extras |
|
print( |
|
f"The following extra attributes are inherited from the original mesh unchanged: {list(self.extras.keys())}" |
|
) |
|
return clean_mesh |
|
|
|
@property |
|
def requires_grad(self): |
|
return self.v_pos.requires_grad |
|
|
|
@property |
|
def v_nrm(self): |
|
if self._v_nrm is None: |
|
self._v_nrm = self._compute_vertex_normal() |
|
return self._v_nrm |
|
|
|
@property |
|
def v_tng(self): |
|
if self._v_tng is None: |
|
self._v_tng = self._compute_vertex_tangent() |
|
return self._v_tng |
|
|
|
@property |
|
def v_tex(self): |
|
if self._v_tex is None: |
|
self._v_tex, self._t_tex_idx = self._unwrap_uv() |
|
return self._v_tex |
|
|
|
@property |
|
def t_tex_idx(self): |
|
if self._t_tex_idx is None: |
|
self._v_tex, self._t_tex_idx = self._unwrap_uv() |
|
return self._t_tex_idx |
|
|
|
|
|
|
|
|
|
|
|
@property |
|
def edges(self): |
|
if self._edges is None: |
|
self._edges = self._compute_edges() |
|
return self._edges |
|
|
|
def _compute_vertex_normal(self): |
|
i0 = self.t_pos_idx[:, 0] |
|
i1 = self.t_pos_idx[:, 1] |
|
i2 = self.t_pos_idx[:, 2] |
|
|
|
v0 = self.v_pos[i0, :] |
|
v1 = self.v_pos[i1, :] |
|
v2 = self.v_pos[i2, :] |
|
|
|
face_normals = torch.cross(v1 - v0, v2 - v0) |
|
|
|
|
|
v_nrm = torch.zeros_like(self.v_pos) |
|
v_nrm.scatter_add_(0, i0[:, None].repeat(1, 3), face_normals) |
|
v_nrm.scatter_add_(0, i1[:, None].repeat(1, 3), face_normals) |
|
v_nrm.scatter_add_(0, i2[:, None].repeat(1, 3), face_normals) |
|
|
|
|
|
v_nrm = torch.where( |
|
dot(v_nrm, v_nrm) > 1e-20, v_nrm, torch.as_tensor([0.0, 0.0, 1.0]).to(v_nrm) |
|
) |
|
v_nrm = F.normalize(v_nrm, dim=1) |
|
|
|
if torch.is_anomaly_enabled(): |
|
assert torch.all(torch.isfinite(v_nrm)) |
|
|
|
return v_nrm |
|
|
|
def _compute_vertex_tangent(self): |
|
vn_idx = [None] * 3 |
|
pos = [None] * 3 |
|
tex = [None] * 3 |
|
for i in range(0, 3): |
|
pos[i] = self.v_pos[self.t_pos_idx[:, i]] |
|
tex[i] = self.v_tex[self.t_tex_idx[:, i]] |
|
|
|
vn_idx[i] = self.t_pos_idx[:, i] |
|
|
|
tangents = torch.zeros_like(self.v_nrm) |
|
tansum = torch.zeros_like(self.v_nrm) |
|
|
|
|
|
uve1 = tex[1] - tex[0] |
|
uve2 = tex[2] - tex[0] |
|
pe1 = pos[1] - pos[0] |
|
pe2 = pos[2] - pos[0] |
|
|
|
nom = pe1 * uve2[..., 1:2] - pe2 * uve1[..., 1:2] |
|
denom = uve1[..., 0:1] * uve2[..., 1:2] - uve1[..., 1:2] * uve2[..., 0:1] |
|
|
|
|
|
tang = nom / torch.where( |
|
denom > 0.0, torch.clamp(denom, min=1e-6), torch.clamp(denom, max=-1e-6) |
|
) |
|
|
|
|
|
for i in range(0, 3): |
|
idx = vn_idx[i][:, None].repeat(1, 3) |
|
tangents.scatter_add_(0, idx, tang) |
|
tansum.scatter_add_( |
|
0, idx, torch.ones_like(tang) |
|
) |
|
tangents = tangents / tansum |
|
|
|
|
|
tangents = F.normalize(tangents, dim=1) |
|
tangents = F.normalize(tangents - dot(tangents, self.v_nrm) * self.v_nrm) |
|
|
|
if torch.is_anomaly_enabled(): |
|
assert torch.all(torch.isfinite(tangents)) |
|
|
|
return tangents |
|
|
|
def _unwrap_uv( |
|
self, xatlas_chart_options: dict = {}, xatlas_pack_options: dict = {} |
|
): |
|
print("Using xatlas to perform UV unwrapping, may take a while ...") |
|
|
|
import xatlas |
|
|
|
atlas = xatlas.Atlas() |
|
atlas.add_mesh( |
|
self.v_pos.detach().cpu().numpy(), |
|
self.t_pos_idx.cpu().numpy(), |
|
) |
|
co = xatlas.ChartOptions() |
|
po = xatlas.PackOptions() |
|
for k, v in xatlas_chart_options.items(): |
|
setattr(co, k, v) |
|
for k, v in xatlas_pack_options.items(): |
|
setattr(po, k, v) |
|
atlas.generate(co, po) |
|
vmapping, indices, uvs = atlas.get_mesh(0) |
|
vmapping = ( |
|
torch.from_numpy( |
|
vmapping.astype(np.uint64, casting="same_kind").view(np.int64) |
|
) |
|
.to(self.v_pos.device) |
|
.long() |
|
) |
|
uvs = torch.from_numpy(uvs).to(self.v_pos.device).float() |
|
indices = ( |
|
torch.from_numpy( |
|
indices.astype(np.uint64, casting="same_kind").view(np.int64) |
|
) |
|
.to(self.v_pos.device) |
|
.long() |
|
) |
|
return uvs, indices |
|
|
|
def unwrap_uv( |
|
self, xatlas_chart_options: dict = {}, xatlas_pack_options: dict = {} |
|
): |
|
self._v_tex, self._t_tex_idx = self._unwrap_uv( |
|
xatlas_chart_options, xatlas_pack_options |
|
) |
|
|
|
def set_vertex_color(self, v_rgb): |
|
assert v_rgb.shape[0] == self.v_pos.shape[0] |
|
self._v_rgb = v_rgb |
|
|
|
def _compute_edges(self): |
|
|
|
edges = torch.cat( |
|
[ |
|
self.t_pos_idx[:, [0, 1]], |
|
self.t_pos_idx[:, [1, 2]], |
|
self.t_pos_idx[:, [2, 0]], |
|
], |
|
dim=0, |
|
) |
|
edges = edges.sort()[0] |
|
edges = torch.unique(edges, dim=0) |
|
return edges |
|
|
|
def normal_consistency(self) -> Float[Tensor, ""]: |
|
edge_nrm: Float[Tensor, "Ne 2 3"] = self.v_nrm[self.edges] |
|
nc = ( |
|
1.0 - torch.cosine_similarity(edge_nrm[:, 0], edge_nrm[:, 1], dim=-1) |
|
).mean() |
|
return nc |
|
|
|
def _laplacian_uniform(self): |
|
|
|
|
|
verts, faces = self.v_pos, self.t_pos_idx |
|
|
|
V = verts.shape[0] |
|
F = faces.shape[0] |
|
|
|
|
|
ii = faces[:, [1, 2, 0]].flatten() |
|
jj = faces[:, [2, 0, 1]].flatten() |
|
adj = torch.stack([torch.cat([ii, jj]), torch.cat([jj, ii])], dim=0).unique( |
|
dim=1 |
|
) |
|
adj_values = torch.ones(adj.shape[1]).to(verts) |
|
|
|
|
|
diag_idx = adj[0] |
|
|
|
|
|
idx = torch.cat((adj, torch.stack((diag_idx, diag_idx), dim=0)), dim=1) |
|
values = torch.cat((-adj_values, adj_values)) |
|
|
|
|
|
|
|
return torch.sparse_coo_tensor(idx, values, (V, V)).coalesce() |
|
|
|
def laplacian(self) -> Float[Tensor, ""]: |
|
with torch.no_grad(): |
|
L = self._laplacian_uniform() |
|
loss = L.mm(self.v_pos) |
|
loss = loss.norm(dim=1) |
|
loss = loss.mean() |
|
return loss |