File size: 10,517 Bytes
e3e5f9e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
from __future__ import annotations

import numpy as np
import torch
import torch.nn.functional as F

from ...utils.typing import *

def dot(x, y):
    return torch.sum(x * y, -1, keepdim=True)

class Mesh:
    def __init__(
        self, v_pos: Float[Tensor, "Nv 3"], t_pos_idx: Integer[Tensor, "Nf 3"], v_rgb: Integer[Tensor, "Nf 3"], **kwargs
    ) -> None:
        self.v_pos: Float[Tensor, "Nv 3"] = v_pos
        self.t_pos_idx: Integer[Tensor, "Nf 3"] = t_pos_idx
        self.v_rgb: Optional[Float[Tensor, "Nv 3"]] = v_rgb

        self._v_nrm: Optional[Float[Tensor, "Nv 3"]] = None
        self._v_tng: Optional[Float[Tensor, "Nv 3"]] = None
        self._v_tex: Optional[Float[Tensor, "Nt 3"]] = None
        self._t_tex_idx: Optional[Float[Tensor, "Nf 3"]] = None
        # self._v_rgb: Optional[Float[Tensor, "Nv 3"]] = None
        self._edges: Optional[Integer[Tensor, "Ne 2"]] = None
        self.extras: Dict[str, Any] = {}
        for k, v in kwargs.items():
            self.add_extra(k, v)

    def add_extra(self, k, v) -> None:
        self.extras[k] = v

    def remove_outlier(self, outlier_n_faces_threshold: Union[int, float]) -> Mesh:
        if self.requires_grad:
            print("Mesh is differentiable, not removing outliers")
            return self

        # use trimesh to first split the mesh into connected components
        # then remove the components with less than n_face_threshold faces
        import trimesh

        # construct a trimesh object
        mesh = trimesh.Trimesh(
            vertices=self.v_pos.detach().cpu().numpy(),
            faces=self.t_pos_idx.detach().cpu().numpy(),
        )

        # split the mesh into connected components
        components = mesh.split(only_watertight=False)
        # log the number of faces in each component
        print(
            "Mesh has {} components, with faces: {}".format(
                len(components), [c.faces.shape[0] for c in components]
            )
        )

        n_faces_threshold: int
        if isinstance(outlier_n_faces_threshold, float):
            # set the threshold to the number of faces in the largest component multiplied by outlier_n_faces_threshold
            n_faces_threshold = int(
                max([c.faces.shape[0] for c in components]) * outlier_n_faces_threshold
            )
        else:
            # set the threshold directly to outlier_n_faces_threshold
            n_faces_threshold = outlier_n_faces_threshold

        # log the threshold
        print(
            "Removing components with less than {} faces".format(n_faces_threshold)
        )

        # remove the components with less than n_face_threshold faces
        components = [c for c in components if c.faces.shape[0] >= n_faces_threshold]

        # log the number of faces in each component after removing outliers
        print(
            "Mesh has {} components after removing outliers, with faces: {}".format(
                len(components), [c.faces.shape[0] for c in components]
            )
        )
        # merge the components
        mesh = trimesh.util.concatenate(components)

        # convert back to our mesh format
        v_pos = torch.from_numpy(mesh.vertices).to(self.v_pos)
        t_pos_idx = torch.from_numpy(mesh.faces).to(self.t_pos_idx)

        clean_mesh = Mesh(v_pos, t_pos_idx)
        # keep the extras unchanged

        if len(self.extras) > 0:
            clean_mesh.extras = self.extras
            print(
                f"The following extra attributes are inherited from the original mesh unchanged: {list(self.extras.keys())}"
            )
        return clean_mesh

    @property
    def requires_grad(self):
        return self.v_pos.requires_grad

    @property
    def v_nrm(self):
        if self._v_nrm is None:
            self._v_nrm = self._compute_vertex_normal()
        return self._v_nrm

    @property
    def v_tng(self):
        if self._v_tng is None:
            self._v_tng = self._compute_vertex_tangent()
        return self._v_tng

    @property
    def v_tex(self):
        if self._v_tex is None:
            self._v_tex, self._t_tex_idx = self._unwrap_uv()
        return self._v_tex

    @property
    def t_tex_idx(self):
        if self._t_tex_idx is None:
            self._v_tex, self._t_tex_idx = self._unwrap_uv()
        return self._t_tex_idx

    # @property
    # def v_rgb(self):
    #     return self._v_rgb

    @property
    def edges(self):
        if self._edges is None:
            self._edges = self._compute_edges()
        return self._edges

    def _compute_vertex_normal(self):
        i0 = self.t_pos_idx[:, 0]
        i1 = self.t_pos_idx[:, 1]
        i2 = self.t_pos_idx[:, 2]

        v0 = self.v_pos[i0, :]
        v1 = self.v_pos[i1, :]
        v2 = self.v_pos[i2, :]

        face_normals = torch.cross(v1 - v0, v2 - v0)

        # Splat face normals to vertices
        v_nrm = torch.zeros_like(self.v_pos)
        v_nrm.scatter_add_(0, i0[:, None].repeat(1, 3), face_normals)
        v_nrm.scatter_add_(0, i1[:, None].repeat(1, 3), face_normals)
        v_nrm.scatter_add_(0, i2[:, None].repeat(1, 3), face_normals)

        # Normalize, replace zero (degenerated) normals with some default value
        v_nrm = torch.where(
            dot(v_nrm, v_nrm) > 1e-20, v_nrm, torch.as_tensor([0.0, 0.0, 1.0]).to(v_nrm)
        )
        v_nrm = F.normalize(v_nrm, dim=1)

        if torch.is_anomaly_enabled():
            assert torch.all(torch.isfinite(v_nrm))

        return v_nrm

    def _compute_vertex_tangent(self):
        vn_idx = [None] * 3
        pos = [None] * 3
        tex = [None] * 3
        for i in range(0, 3):
            pos[i] = self.v_pos[self.t_pos_idx[:, i]]
            tex[i] = self.v_tex[self.t_tex_idx[:, i]]
            # t_nrm_idx is always the same as t_pos_idx
            vn_idx[i] = self.t_pos_idx[:, i]

        tangents = torch.zeros_like(self.v_nrm)
        tansum = torch.zeros_like(self.v_nrm)

        # Compute tangent space for each triangle
        uve1 = tex[1] - tex[0]
        uve2 = tex[2] - tex[0]
        pe1 = pos[1] - pos[0]
        pe2 = pos[2] - pos[0]

        nom = pe1 * uve2[..., 1:2] - pe2 * uve1[..., 1:2]
        denom = uve1[..., 0:1] * uve2[..., 1:2] - uve1[..., 1:2] * uve2[..., 0:1]

        # Avoid division by zero for degenerated texture coordinates
        tang = nom / torch.where(
            denom > 0.0, torch.clamp(denom, min=1e-6), torch.clamp(denom, max=-1e-6)
        )

        # Update all 3 vertices
        for i in range(0, 3):
            idx = vn_idx[i][:, None].repeat(1, 3)
            tangents.scatter_add_(0, idx, tang)  # tangents[n_i] = tangents[n_i] + tang
            tansum.scatter_add_(
                0, idx, torch.ones_like(tang)
            )  # tansum[n_i] = tansum[n_i] + 1
        tangents = tangents / tansum

        # Normalize and make sure tangent is perpendicular to normal
        tangents = F.normalize(tangents, dim=1)
        tangents = F.normalize(tangents - dot(tangents, self.v_nrm) * self.v_nrm)

        if torch.is_anomaly_enabled():
            assert torch.all(torch.isfinite(tangents))

        return tangents

    def _unwrap_uv(
        self, xatlas_chart_options: dict = {}, xatlas_pack_options: dict = {}
    ):
        print("Using xatlas to perform UV unwrapping, may take a while ...")

        import xatlas

        atlas = xatlas.Atlas()
        atlas.add_mesh(
            self.v_pos.detach().cpu().numpy(),
            self.t_pos_idx.cpu().numpy(),
        )
        co = xatlas.ChartOptions()
        po = xatlas.PackOptions()
        for k, v in xatlas_chart_options.items():
            setattr(co, k, v)
        for k, v in xatlas_pack_options.items():
            setattr(po, k, v)
        atlas.generate(co, po)
        vmapping, indices, uvs = atlas.get_mesh(0)
        vmapping = (
            torch.from_numpy(
                vmapping.astype(np.uint64, casting="same_kind").view(np.int64)
            )
            .to(self.v_pos.device)
            .long()
        )
        uvs = torch.from_numpy(uvs).to(self.v_pos.device).float()
        indices = (
            torch.from_numpy(
                indices.astype(np.uint64, casting="same_kind").view(np.int64)
            )
            .to(self.v_pos.device)
            .long()
        )
        return uvs, indices

    def unwrap_uv(
        self, xatlas_chart_options: dict = {}, xatlas_pack_options: dict = {}
    ):
        self._v_tex, self._t_tex_idx = self._unwrap_uv(
            xatlas_chart_options, xatlas_pack_options
        )

    def set_vertex_color(self, v_rgb):
        assert v_rgb.shape[0] == self.v_pos.shape[0]
        self._v_rgb = v_rgb

    def _compute_edges(self):
        # Compute edges
        edges = torch.cat(
            [
                self.t_pos_idx[:, [0, 1]],
                self.t_pos_idx[:, [1, 2]],
                self.t_pos_idx[:, [2, 0]],
            ],
            dim=0,
        )
        edges = edges.sort()[0]
        edges = torch.unique(edges, dim=0)
        return edges

    def normal_consistency(self) -> Float[Tensor, ""]:
        edge_nrm: Float[Tensor, "Ne 2 3"] = self.v_nrm[self.edges]
        nc = (
            1.0 - torch.cosine_similarity(edge_nrm[:, 0], edge_nrm[:, 1], dim=-1)
        ).mean()
        return nc

    def _laplacian_uniform(self):
        # from stable-dreamfusion
        # https://github.com/ashawkey/stable-dreamfusion/blob/8fb3613e9e4cd1ded1066b46e80ca801dfb9fd06/nerf/renderer.py#L224
        verts, faces = self.v_pos, self.t_pos_idx

        V = verts.shape[0]
        F = faces.shape[0]

        # Neighbor indices
        ii = faces[:, [1, 2, 0]].flatten()
        jj = faces[:, [2, 0, 1]].flatten()
        adj = torch.stack([torch.cat([ii, jj]), torch.cat([jj, ii])], dim=0).unique(
            dim=1
        )
        adj_values = torch.ones(adj.shape[1]).to(verts)

        # Diagonal indices
        diag_idx = adj[0]

        # Build the sparse matrix
        idx = torch.cat((adj, torch.stack((diag_idx, diag_idx), dim=0)), dim=1)
        values = torch.cat((-adj_values, adj_values))

        # The coalesce operation sums the duplicate indices, resulting in the
        # correct diagonal
        return torch.sparse_coo_tensor(idx, values, (V, V)).coalesce()

    def laplacian(self) -> Float[Tensor, ""]:
        with torch.no_grad():
            L = self._laplacian_uniform()
        loss = L.mm(self.v_pos)
        loss = loss.norm(dim=1)
        loss = loss.mean()
        return loss