de-arena / src /leaderboard /read_evals.py
yzabc007's picture
Update space
04e5831
raw
history blame
21.7 kB
import glob
import json
import math
import os
from dataclasses import dataclass
import dateutil
import numpy as np
from src.display.formatting import make_clickable_model
from src.display.utils import AutoEvalColumn, ModelType, Tasks, Precision, WeightType, Domains
from src.submission.check_validity import is_model_on_hub
@dataclass
class RankResult:
"""Represents one the overall ranking table
"""
eval_name: str
full_model: str
org: str
model: str
results: dict
license: str = "?"
knowledge_cutoff: str = ""
@classmethod
def init_from_json_dict(self, data):
config = data.get("config")
# Get model and org
model = config.get("model_name")
org = config.get("organization")
license = config.get("license")
knowledge_cutoff = config.get("knowledge_cutoff")
model_results = data.get("results")
# Extract results available in this file (some results are split in several files)
results = {}
for domain in Domains:
domain = domain.value
results[domain.dimension] = model_results.get(domain.dimension).get(domain.metric, None)
return self(
eval_name=f"{org}_{model}",
full_model=f"{org}/{model}",
org=org,
model=model,
results=results,
license=license,
knowledge_cutoff=knowledge_cutoff
)
def to_dict(self):
"""Converts the Eval Result to a dict compatible with our dataframe display"""
# score = 1 / self.results[Domains.dim0.dimension] if self.results[Domains.dim0.dimension] != 0 else 0
# average = sum([v for v in self.results.values() if v is not None]) / len(Tasks)
data_dict = {
# "eval_name": self.eval_name, # not a column, just a save name,
# AutoEvalColumn.model.name: make_clickable_model(self.full_model),
AutoEvalColumn.rank.name: None, # placeholder for the rank
AutoEvalColumn.model.name: self.model,
AutoEvalColumn.score.name: self.results[Domains.dim0.value.dimension],
AutoEvalColumn.score_sd.name: None, # placeholder for the score sd
AutoEvalColumn.license.name: self.license,
AutoEvalColumn.organization.name: self.org,
AutoEvalColumn.knowledge_cutoff.name: self.knowledge_cutoff,
# AutoEvalColumn.precision.name: self.precision.value.name,
# AutoEvalColumn.model_type.name: self.model_type.value.name,
# AutoEvalColumn.model_type_symbol.name
# AutoEvalColumn.weight_type.name: self.weight_type.value.name,
# AutoEvalColumn.architecture.name: self.architecture,
# AutoEvalColumn.revision.name: self.revision,
# AutoEvalColumn.average.name: average,
# AutoEvalColumn.likes.name: self.likes,
# AutoEvalColumn.params.name: self.num_params,
# AutoEvalColumn.still_on_hub.name: self.still_on_hub,
}
@dataclass
class ModelResult:
"""Represents one full evaluation. Built from a combination of the result and request file for a given run.
"""
eval_name: str
full_model: str
org: str
model: str
results: dict
license: str = "?"
knowledge_cutoff: str = ""
@classmethod
def init_from_json_dict(self, data):
config = data.get("config")
# Get model and org
model = config.get("model_name")
org = config.get("organization")
license = config.get("license")
knowledge_cutoff = config.get("knowledge_cutoff")
model_results = data.get("results")
new_results = {}
for k, v in model_results.items():
new_v = {}
for kk, vv in v.items():
if vv == 'N/A':
new_v[kk] = None
else:
new_v[kk] = vv
new_results[k] = new_v
# Extract results available in this file (some results are split in several files)
# results = {}
# for domain in Domains:
# domain = domain.value
# results[domain.dimension] = model_results.get(domain.dimension).get(domain.metric, None)
return self(
eval_name=f"{org}_{model}",
full_model=f"{org}/{model}",
org=org,
model=model,
results=new_results,
license=license,
knowledge_cutoff=knowledge_cutoff
)
def to_dict(self):
"""Converts the Eval Result to a dict compatible with our dataframe display"""
data_dict = {
# "eval_name": self.eval_name, # not a column, just a save name,
# AutoEvalColumn.model.name: make_clickable_model(self.full_model),
# AutoEvalColumn.rank.name: None, # placeholder for the rank
AutoEvalColumn.model.name: self.model,
# AutoEvalColumn.score.name: self.results[Domains.dim0.value.dimension],
# AutoEvalColumn.score_sd.name: None, # placeholder for the score sd
# AutoEvalColumn.score_overall.name: float(self.results.get("OVERALL").get("Average Score", None)),
# AutoEvalColumn.score_math_algebra.name: float(self.results.get("Algebra").get("Average Score", None)),
# AutoEvalColumn.score_math_geometry.name: float(self.results.get("Geometry").get("Average Score", None)),
# AutoEvalColumn.score_math_probability.name: float(self.results.get("Probability").get("Average Score", None)),
# AutoEvalColumn.score_reason_logical.name: float(self.results.get("Logical").get("Average Score", None)),
# AutoEvalColumn.score_reason_social.name: float(self.results.get("Social").get("Average Score", None)),
# AutoEvalColumn.sd_overall.name: float(self.results.get("OVERALL").get("Standard Deviation", None)),
# AutoEvalColumn.sd_math_algebra.name: float(self.results.get("Algebra").get("Standard Deviation", None)),
# AutoEvalColumn.sd_math_geometry.name: float(self.results.get("Geometry").get("Standard Deviation", None)),
# AutoEvalColumn.sd_math_probability.name: float(self.results.get("Probability").get("Standard Deviation", None)),
# AutoEvalColumn.sd_reason_logical.name: float(self.results.get("Logical").get("Standard Deviation", None)),
# AutoEvalColumn.sd_reason_social.name: float(self.results.get("Social").get("Standard Deviation", None)),
# AutoEvalColumn.rank_overall.name: int(self.results.get("OVERALL").get("Rank", None)),
# AutoEvalColumn.rank_math_algebra.name: int(self.results.get("Algebra").get("Rank", None)),
# AutoEvalColumn.rank_math_geometry.name: int(self.results.get("Geometry").get("Rank", None)),
# AutoEvalColumn.rank_math_probability.name: int(self.results.get("Probability").get("Rank", None)),
# AutoEvalColumn.rank_reason_logical.name: int(self.results.get("Logical").get("Rank", None)),
# AutoEvalColumn.rank_reason_social.name: int(self.results.get("Social").get("Rank", None)),
AutoEvalColumn.score_overall.name: self.results.get("OVERALL").get("Average Score", None) if self.results.get("OVERALL") else None,
AutoEvalColumn.score_math_algebra.name: self.results.get("Algebra").get("Average Score", None) if self.results.get("Algebra") else None,
AutoEvalColumn.score_math_geometry.name: self.results.get("Geometry").get("Average Score", None) if self.results.get("Geometry") else None,
AutoEvalColumn.score_math_probability.name: self.results.get("Probability").get("Average Score", None) if self.results.get("Probability") else None,
AutoEvalColumn.score_reason_logical.name: self.results.get("Logical").get("Average Score", None) if self.results.get("Logical") else None,
AutoEvalColumn.score_reason_social.name: self.results.get("Social").get("Average Score", None) if self.results.get("Social") else None,
AutoEvalColumn.sd_overall.name: self.results.get("OVERALL").get("Standard Deviation", None) if self.results.get("OVERALL") else None,
AutoEvalColumn.sd_math_algebra.name: self.results.get("Algebra").get("Standard Deviation", None) if self.results.get("Algebra") else None,
AutoEvalColumn.sd_math_geometry.name: self.results.get("Geometry").get("Standard Deviation", None) if self.results.get("Geometry") else None,
AutoEvalColumn.sd_math_probability.name: self.results.get("Probability").get("Standard Deviation", None) if self.results.get("Probability") else None,
AutoEvalColumn.sd_reason_logical.name: self.results.get("Logical").get("Standard Deviation", None) if self.results.get("Logical") else None,
AutoEvalColumn.sd_reason_social.name: self.results.get("Social").get("Standard Deviation", None) if self.results.get("Social") else None,
AutoEvalColumn.rank_overall.name: self.results.get("OVERALL").get("Rank", None) if self.results.get("OVERALL") else None,
AutoEvalColumn.rank_math_algebra.name: self.results.get("Algebra").get("Rank", None) if self.results.get("Algebra") else None,
AutoEvalColumn.rank_math_geometry.name: self.results.get("Geometry").get("Rank", None) if self.results.get("Geometry") else None,
AutoEvalColumn.rank_math_probability.name: self.results.get("Probability").get("Rank", None) if self.results.get("Probability") else None,
AutoEvalColumn.rank_reason_logical.name: self.results.get("Logical").get("Rank", None) if self.results.get("Logical") else None,
AutoEvalColumn.rank_reason_social.name: self.results.get("Social").get("Rank", None) if self.results.get("Social") else None,
AutoEvalColumn.score_chemistry.name: self.results.get("Chemistry").get("Average Score", None) if self.results.get("Chemistry") else None,
AutoEvalColumn.sd_chemistry.name: self.results.get("Chemistry").get("Standard Deviation", None) if self.results.get("Chemistry") else None,
AutoEvalColumn.rank_chemistry.name: self.results.get("Chemistry").get("Rank", None) if self.results.get("Chemistry") else None,
AutoEvalColumn.score_cpp.name: self.results.get("CPP").get("Average Score", None) if self.results.get("CPP") else None,
AutoEvalColumn.sd_cpp.name: self.results.get("CPP").get("Standard Deviation", None) if self.results.get("CPP") else None,
AutoEvalColumn.rank_cpp.name: self.results.get("CPP").get("Rank", None) if self.results.get("CPP") else None,
AutoEvalColumn.license.name: self.license,
AutoEvalColumn.organization.name: self.org,
AutoEvalColumn.knowledge_cutoff.name: self.knowledge_cutoff,
}
# for task in Tasks:
# data_dict[task.value.col_name] = self.results[task.value.benchmark]
# for domain in Domains:
# data_dict[domain.value.col_name] = self.results[domain.value.dimension]
return data_dict
@dataclass
class EvalResult:
"""Represents one full evaluation. Built from a combination of the result and request file for a given run.
"""
eval_name: str # org_model_precision (uid)
full_model: str # org/model (path on hub)
org: str
model: str
revision: str # commit hash, "" if main
results: dict
precision: Precision = Precision.Unknown
model_type: ModelType = ModelType.Unknown # Pretrained, fine tuned, ...
weight_type: WeightType = WeightType.Original # Original or Adapter
architecture: str = "Unknown"
license: str = "?"
likes: int = 0
num_params: int = 0
date: str = "" # submission date of request file
still_on_hub: bool = False
@classmethod
def init_from_json_file(self, json_filepath):
"""Inits the result from the specific model result file"""
with open(json_filepath) as fp:
data = json.load(fp)
config = data.get("config")
# Precision
precision = Precision.from_str(config.get("model_dtype"))
# Get model and org
org_and_model = config.get("model_name", config.get("model_args", None))
org_and_model = org_and_model.split("/", 1)
if len(org_and_model) == 1:
org = None
model = org_and_model[0]
result_key = f"{model}_{precision.value.name}"
else:
org = org_and_model[0]
model = org_and_model[1]
result_key = f"{org}_{model}_{precision.value.name}"
full_model = "/".join(org_and_model)
still_on_hub, _, model_config = is_model_on_hub(
full_model, config.get("model_sha", "main"), trust_remote_code=True, test_tokenizer=False
)
architecture = "?"
if model_config is not None:
architectures = getattr(model_config, "architectures", None)
if architectures:
architecture = ";".join(architectures)
# Extract results available in this file (some results are split in several files)
results = {}
for task in Tasks:
task = task.value
# We average all scores of a given metric (not all metrics are present in all files)
accs = np.array([v.get(task.metric, None) for k, v in data["results"].items() if task.benchmark == k])
if accs.size == 0 or any([acc is None for acc in accs]):
continue
mean_acc = np.mean(accs) * 100.0
results[task.benchmark] = mean_acc
return self(
eval_name=result_key,
full_model=full_model,
org=org,
model=model,
results=results,
precision=precision,
revision= config.get("model_sha", ""),
still_on_hub=still_on_hub,
architecture=architecture
)
def update_with_request_file(self, requests_path):
"""Finds the relevant request file for the current model and updates info with it"""
request_file = get_request_file_for_model(requests_path, self.full_model, self.precision.value.name)
try:
with open(request_file, "r") as f:
request = json.load(f)
self.model_type = ModelType.from_str(request.get("model_type", ""))
self.weight_type = WeightType[request.get("weight_type", "Original")]
self.license = request.get("license", "?")
self.likes = request.get("likes", 0)
self.num_params = request.get("params", 0)
self.date = request.get("submitted_time", "")
except Exception:
print(f"Could not find request file for {self.org}/{self.model} with precision {self.precision.value.name}")
def to_dict(self):
"""Converts the Eval Result to a dict compatible with our dataframe display"""
average = sum([v for v in self.results.values() if v is not None]) / len(Tasks)
# print(AutoEvalColumn.precision.name, self.precision.value.name)
data_dict = {
"eval_name": self.eval_name, # not a column, just a save name,
AutoEvalColumn.precision.name: self.precision.value.name,
AutoEvalColumn.model_type.name: self.model_type.value.name,
AutoEvalColumn.model_type_symbol.name: self.model_type.value.symbol,
AutoEvalColumn.weight_type.name: self.weight_type.value.name,
AutoEvalColumn.architecture.name: self.architecture,
AutoEvalColumn.model.name: make_clickable_model(self.full_model),
AutoEvalColumn.revision.name: self.revision,
AutoEvalColumn.average.name: average,
AutoEvalColumn.license.name: self.license,
AutoEvalColumn.likes.name: self.likes,
AutoEvalColumn.params.name: self.num_params,
AutoEvalColumn.still_on_hub.name: self.still_on_hub,
}
for task in Tasks:
data_dict[task.value.col_name] = self.results[task.value.benchmark]
return data_dict
def get_request_file_for_model(requests_path, model_name, precision):
"""Selects the correct request file for a given model. Only keeps runs tagged as FINISHED"""
request_files = os.path.join(
requests_path,
f"{model_name}_eval_request_*.json",
)
request_files = glob.glob(request_files)
# Select correct request file (precision)
request_file = ""
request_files = sorted(request_files, reverse=True)
for tmp_request_file in request_files:
with open(tmp_request_file, "r") as f:
req_content = json.load(f)
if (
req_content["status"] in ["FINISHED"]
and req_content["precision"] == precision.split(".")[-1]
):
request_file = tmp_request_file
return request_file
def get_raw_eval_results(results_path: str, requests_path: str) -> list[EvalResult]:
"""From the path of the results folder root, extract all needed info for results"""
model_result_filepaths = []
for root, _, files in os.walk(results_path):
# We should only have json files in model results
if len(files) == 0 or any([not f.endswith(".json") for f in files]):
continue
# Sort the files by date
try:
files.sort(key=lambda x: x.removesuffix(".json").removeprefix("results_")[:-7])
except dateutil.parser._parser.ParserError:
files = [files[-1]]
for file in files:
model_result_filepaths.append(os.path.join(root, file))
eval_results = {}
for model_result_filepath in model_result_filepaths:
# Creation of result
eval_result = EvalResult.init_from_json_file(model_result_filepath)
eval_result.update_with_request_file(requests_path)
# Store results of same eval together
eval_name = eval_result.eval_name
if eval_name in eval_results.keys():
eval_results[eval_name].results.update({k: v for k, v in eval_result.results.items() if v is not None})
else:
eval_results[eval_name] = eval_result
results = []
for v in eval_results.values():
try:
v.to_dict() # we test if the dict version is complete
results.append(v)
except KeyError: # not all eval values present
continue
return results
def get_raw_model_results(results_path: str) -> list[EvalResult]:
"""From the path of the results folder root, extract all needed info for results"""
try:
with open(results_path) as fp:
data = json.load(fp)
except:
data = eval(open(results_path).read()) # a list of dicts
# print("data", len(data))
# print(data[0])
# {'config': {'model_name': 'ChatGPT-4o-latest (2024-09-03)',
# 'organization': 'OpenAI', 'license': 'Proprietary',
# 'knowledge_cutoff': '2023/10'},
# 'results': {'math-algebra':
# {'Score': 99.19484702, 'Avg Rank': 1.666666667, 'Min Rank': 1, 'Max Rank': 3},
# 'math-probability': {'Score': 100, 'Avg Rank': 1, 'Min Rank': 1, 'Max Rank': 1},
# 'reasoning-logical': {'Avg Rank': 1, 'Min Rank': 1, 'Max Rank': 1},
# 'overall': {'Avg Rank': 2, 'Min Rank': 2, 'Max Rank': 2}}}
eval_results = {}
for result in data:
# Creation of result
eval_result = ModelResult.init_from_json_dict(result)
# print(eval_result)
# ModelResult(eval_name='OpenAI_ChatGPT-4o-latest (2024-09-03)',
# full_model='OpenAI/ChatGPT-4o-latest (2024-09-03)',
# org='OpenAI', model='ChatGPT-4o-latest (2024-09-03)',
# results={'overall': None}, license='Proprietary', knowledge_cutoff='2023/10')
# all_num_results = eval_result.results
# def get_terminal_values(data):
# terminal_values = []
# for key, value in data.items():
# if isinstance(value, dict):
# terminal_values.extend(get_terminal_values(value))
# else:
# terminal_values.append(value)
# return terminal_values
# all_values = get_terminal_values(all_num_results)
# if 'N/A' in all_values:
# continue
eval_name = eval_result.eval_name
eval_results[eval_name] = eval_result
# # Store results of same eval together
# if eval_name in eval_results.keys():
# eval_results[eval_name].results.update({k: v for k, v in eval_result.results.items() if v is not None})
# else:
# eval_results[eval_name] = eval_result
results = []
for v in eval_results.values():
# print(v.to_dict())
# exit()
# {'eval_name': 'OpenAI_ChatGPT-4o-latest (2024-09-03)',
# 'Model': '<a target="_blank" href="https://huggingface.co/OpenAI/ChatGPT-4o-latest (2024-09-03)"
# style="color: var(--link-text-color); text-decoration: underline;text-decoration-style: dotted;">OpenAI/ChatGPT-4o-latest (2024-09-03)</a>',
# 'Hub License': 'Proprietary', 'Organization': 'OpenAI', 'Knowledge cutoff': '2023/10', 'Overall': None}
try:
v.to_dict() # we test if the dict version is complete
results.append(v)
except KeyError: # not all eval values present
continue
return results