File size: 21,737 Bytes
da92625 bfb3ae7 da92625 ee84fd2 37b3751 ee84fd2 bfb3ae7 ee84fd2 bfb3ae7 ee84fd2 bfb3ae7 4106f16 bfb3ae7 4106f16 2566764 bfb3ae7 2566764 ee84fd2 bfb3ae7 ee84fd2 bfb3ae7 2566764 bfb3ae7 ee84fd2 2566764 035c755 bbcf980 035c755 2566764 826f447 bfb3ae7 b47be80 37b3751 b47be80 ee84fd2 37b3751 979bed2 37b3751 04e5831 37b3751 04e5831 37b3751 04e5831 37b3751 979bed2 3d466ff 37b3751 ee84fd2 4106f16 ee84fd2 826f447 bfb3ae7 ee84fd2 da92625 b47be80 da92625 2642851 ee84fd2 bfb3ae7 ee84fd2 4106f16 ee84fd2 bfb3ae7 4106f16 37b3751 bfb3ae7 37b3751 ee84fd2 4106f16 ee84fd2 4106f16 37b3751 4106f16 ee84fd2 4106f16 ee84fd2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 |
import glob
import json
import math
import os
from dataclasses import dataclass
import dateutil
import numpy as np
from src.display.formatting import make_clickable_model
from src.display.utils import AutoEvalColumn, ModelType, Tasks, Precision, WeightType, Domains
from src.submission.check_validity import is_model_on_hub
@dataclass
class RankResult:
"""Represents one the overall ranking table
"""
eval_name: str
full_model: str
org: str
model: str
results: dict
license: str = "?"
knowledge_cutoff: str = ""
@classmethod
def init_from_json_dict(self, data):
config = data.get("config")
# Get model and org
model = config.get("model_name")
org = config.get("organization")
license = config.get("license")
knowledge_cutoff = config.get("knowledge_cutoff")
model_results = data.get("results")
# Extract results available in this file (some results are split in several files)
results = {}
for domain in Domains:
domain = domain.value
results[domain.dimension] = model_results.get(domain.dimension).get(domain.metric, None)
return self(
eval_name=f"{org}_{model}",
full_model=f"{org}/{model}",
org=org,
model=model,
results=results,
license=license,
knowledge_cutoff=knowledge_cutoff
)
def to_dict(self):
"""Converts the Eval Result to a dict compatible with our dataframe display"""
# score = 1 / self.results[Domains.dim0.dimension] if self.results[Domains.dim0.dimension] != 0 else 0
# average = sum([v for v in self.results.values() if v is not None]) / len(Tasks)
data_dict = {
# "eval_name": self.eval_name, # not a column, just a save name,
# AutoEvalColumn.model.name: make_clickable_model(self.full_model),
AutoEvalColumn.rank.name: None, # placeholder for the rank
AutoEvalColumn.model.name: self.model,
AutoEvalColumn.score.name: self.results[Domains.dim0.value.dimension],
AutoEvalColumn.score_sd.name: None, # placeholder for the score sd
AutoEvalColumn.license.name: self.license,
AutoEvalColumn.organization.name: self.org,
AutoEvalColumn.knowledge_cutoff.name: self.knowledge_cutoff,
# AutoEvalColumn.precision.name: self.precision.value.name,
# AutoEvalColumn.model_type.name: self.model_type.value.name,
# AutoEvalColumn.model_type_symbol.name
# AutoEvalColumn.weight_type.name: self.weight_type.value.name,
# AutoEvalColumn.architecture.name: self.architecture,
# AutoEvalColumn.revision.name: self.revision,
# AutoEvalColumn.average.name: average,
# AutoEvalColumn.likes.name: self.likes,
# AutoEvalColumn.params.name: self.num_params,
# AutoEvalColumn.still_on_hub.name: self.still_on_hub,
}
@dataclass
class ModelResult:
"""Represents one full evaluation. Built from a combination of the result and request file for a given run.
"""
eval_name: str
full_model: str
org: str
model: str
results: dict
license: str = "?"
knowledge_cutoff: str = ""
@classmethod
def init_from_json_dict(self, data):
config = data.get("config")
# Get model and org
model = config.get("model_name")
org = config.get("organization")
license = config.get("license")
knowledge_cutoff = config.get("knowledge_cutoff")
model_results = data.get("results")
new_results = {}
for k, v in model_results.items():
new_v = {}
for kk, vv in v.items():
if vv == 'N/A':
new_v[kk] = None
else:
new_v[kk] = vv
new_results[k] = new_v
# Extract results available in this file (some results are split in several files)
# results = {}
# for domain in Domains:
# domain = domain.value
# results[domain.dimension] = model_results.get(domain.dimension).get(domain.metric, None)
return self(
eval_name=f"{org}_{model}",
full_model=f"{org}/{model}",
org=org,
model=model,
results=new_results,
license=license,
knowledge_cutoff=knowledge_cutoff
)
def to_dict(self):
"""Converts the Eval Result to a dict compatible with our dataframe display"""
data_dict = {
# "eval_name": self.eval_name, # not a column, just a save name,
# AutoEvalColumn.model.name: make_clickable_model(self.full_model),
# AutoEvalColumn.rank.name: None, # placeholder for the rank
AutoEvalColumn.model.name: self.model,
# AutoEvalColumn.score.name: self.results[Domains.dim0.value.dimension],
# AutoEvalColumn.score_sd.name: None, # placeholder for the score sd
# AutoEvalColumn.score_overall.name: float(self.results.get("OVERALL").get("Average Score", None)),
# AutoEvalColumn.score_math_algebra.name: float(self.results.get("Algebra").get("Average Score", None)),
# AutoEvalColumn.score_math_geometry.name: float(self.results.get("Geometry").get("Average Score", None)),
# AutoEvalColumn.score_math_probability.name: float(self.results.get("Probability").get("Average Score", None)),
# AutoEvalColumn.score_reason_logical.name: float(self.results.get("Logical").get("Average Score", None)),
# AutoEvalColumn.score_reason_social.name: float(self.results.get("Social").get("Average Score", None)),
# AutoEvalColumn.sd_overall.name: float(self.results.get("OVERALL").get("Standard Deviation", None)),
# AutoEvalColumn.sd_math_algebra.name: float(self.results.get("Algebra").get("Standard Deviation", None)),
# AutoEvalColumn.sd_math_geometry.name: float(self.results.get("Geometry").get("Standard Deviation", None)),
# AutoEvalColumn.sd_math_probability.name: float(self.results.get("Probability").get("Standard Deviation", None)),
# AutoEvalColumn.sd_reason_logical.name: float(self.results.get("Logical").get("Standard Deviation", None)),
# AutoEvalColumn.sd_reason_social.name: float(self.results.get("Social").get("Standard Deviation", None)),
# AutoEvalColumn.rank_overall.name: int(self.results.get("OVERALL").get("Rank", None)),
# AutoEvalColumn.rank_math_algebra.name: int(self.results.get("Algebra").get("Rank", None)),
# AutoEvalColumn.rank_math_geometry.name: int(self.results.get("Geometry").get("Rank", None)),
# AutoEvalColumn.rank_math_probability.name: int(self.results.get("Probability").get("Rank", None)),
# AutoEvalColumn.rank_reason_logical.name: int(self.results.get("Logical").get("Rank", None)),
# AutoEvalColumn.rank_reason_social.name: int(self.results.get("Social").get("Rank", None)),
AutoEvalColumn.score_overall.name: self.results.get("OVERALL").get("Average Score", None) if self.results.get("OVERALL") else None,
AutoEvalColumn.score_math_algebra.name: self.results.get("Algebra").get("Average Score", None) if self.results.get("Algebra") else None,
AutoEvalColumn.score_math_geometry.name: self.results.get("Geometry").get("Average Score", None) if self.results.get("Geometry") else None,
AutoEvalColumn.score_math_probability.name: self.results.get("Probability").get("Average Score", None) if self.results.get("Probability") else None,
AutoEvalColumn.score_reason_logical.name: self.results.get("Logical").get("Average Score", None) if self.results.get("Logical") else None,
AutoEvalColumn.score_reason_social.name: self.results.get("Social").get("Average Score", None) if self.results.get("Social") else None,
AutoEvalColumn.sd_overall.name: self.results.get("OVERALL").get("Standard Deviation", None) if self.results.get("OVERALL") else None,
AutoEvalColumn.sd_math_algebra.name: self.results.get("Algebra").get("Standard Deviation", None) if self.results.get("Algebra") else None,
AutoEvalColumn.sd_math_geometry.name: self.results.get("Geometry").get("Standard Deviation", None) if self.results.get("Geometry") else None,
AutoEvalColumn.sd_math_probability.name: self.results.get("Probability").get("Standard Deviation", None) if self.results.get("Probability") else None,
AutoEvalColumn.sd_reason_logical.name: self.results.get("Logical").get("Standard Deviation", None) if self.results.get("Logical") else None,
AutoEvalColumn.sd_reason_social.name: self.results.get("Social").get("Standard Deviation", None) if self.results.get("Social") else None,
AutoEvalColumn.rank_overall.name: self.results.get("OVERALL").get("Rank", None) if self.results.get("OVERALL") else None,
AutoEvalColumn.rank_math_algebra.name: self.results.get("Algebra").get("Rank", None) if self.results.get("Algebra") else None,
AutoEvalColumn.rank_math_geometry.name: self.results.get("Geometry").get("Rank", None) if self.results.get("Geometry") else None,
AutoEvalColumn.rank_math_probability.name: self.results.get("Probability").get("Rank", None) if self.results.get("Probability") else None,
AutoEvalColumn.rank_reason_logical.name: self.results.get("Logical").get("Rank", None) if self.results.get("Logical") else None,
AutoEvalColumn.rank_reason_social.name: self.results.get("Social").get("Rank", None) if self.results.get("Social") else None,
AutoEvalColumn.score_chemistry.name: self.results.get("Chemistry").get("Average Score", None) if self.results.get("Chemistry") else None,
AutoEvalColumn.sd_chemistry.name: self.results.get("Chemistry").get("Standard Deviation", None) if self.results.get("Chemistry") else None,
AutoEvalColumn.rank_chemistry.name: self.results.get("Chemistry").get("Rank", None) if self.results.get("Chemistry") else None,
AutoEvalColumn.score_cpp.name: self.results.get("CPP").get("Average Score", None) if self.results.get("CPP") else None,
AutoEvalColumn.sd_cpp.name: self.results.get("CPP").get("Standard Deviation", None) if self.results.get("CPP") else None,
AutoEvalColumn.rank_cpp.name: self.results.get("CPP").get("Rank", None) if self.results.get("CPP") else None,
AutoEvalColumn.license.name: self.license,
AutoEvalColumn.organization.name: self.org,
AutoEvalColumn.knowledge_cutoff.name: self.knowledge_cutoff,
}
# for task in Tasks:
# data_dict[task.value.col_name] = self.results[task.value.benchmark]
# for domain in Domains:
# data_dict[domain.value.col_name] = self.results[domain.value.dimension]
return data_dict
@dataclass
class EvalResult:
"""Represents one full evaluation. Built from a combination of the result and request file for a given run.
"""
eval_name: str # org_model_precision (uid)
full_model: str # org/model (path on hub)
org: str
model: str
revision: str # commit hash, "" if main
results: dict
precision: Precision = Precision.Unknown
model_type: ModelType = ModelType.Unknown # Pretrained, fine tuned, ...
weight_type: WeightType = WeightType.Original # Original or Adapter
architecture: str = "Unknown"
license: str = "?"
likes: int = 0
num_params: int = 0
date: str = "" # submission date of request file
still_on_hub: bool = False
@classmethod
def init_from_json_file(self, json_filepath):
"""Inits the result from the specific model result file"""
with open(json_filepath) as fp:
data = json.load(fp)
config = data.get("config")
# Precision
precision = Precision.from_str(config.get("model_dtype"))
# Get model and org
org_and_model = config.get("model_name", config.get("model_args", None))
org_and_model = org_and_model.split("/", 1)
if len(org_and_model) == 1:
org = None
model = org_and_model[0]
result_key = f"{model}_{precision.value.name}"
else:
org = org_and_model[0]
model = org_and_model[1]
result_key = f"{org}_{model}_{precision.value.name}"
full_model = "/".join(org_and_model)
still_on_hub, _, model_config = is_model_on_hub(
full_model, config.get("model_sha", "main"), trust_remote_code=True, test_tokenizer=False
)
architecture = "?"
if model_config is not None:
architectures = getattr(model_config, "architectures", None)
if architectures:
architecture = ";".join(architectures)
# Extract results available in this file (some results are split in several files)
results = {}
for task in Tasks:
task = task.value
# We average all scores of a given metric (not all metrics are present in all files)
accs = np.array([v.get(task.metric, None) for k, v in data["results"].items() if task.benchmark == k])
if accs.size == 0 or any([acc is None for acc in accs]):
continue
mean_acc = np.mean(accs) * 100.0
results[task.benchmark] = mean_acc
return self(
eval_name=result_key,
full_model=full_model,
org=org,
model=model,
results=results,
precision=precision,
revision= config.get("model_sha", ""),
still_on_hub=still_on_hub,
architecture=architecture
)
def update_with_request_file(self, requests_path):
"""Finds the relevant request file for the current model and updates info with it"""
request_file = get_request_file_for_model(requests_path, self.full_model, self.precision.value.name)
try:
with open(request_file, "r") as f:
request = json.load(f)
self.model_type = ModelType.from_str(request.get("model_type", ""))
self.weight_type = WeightType[request.get("weight_type", "Original")]
self.license = request.get("license", "?")
self.likes = request.get("likes", 0)
self.num_params = request.get("params", 0)
self.date = request.get("submitted_time", "")
except Exception:
print(f"Could not find request file for {self.org}/{self.model} with precision {self.precision.value.name}")
def to_dict(self):
"""Converts the Eval Result to a dict compatible with our dataframe display"""
average = sum([v for v in self.results.values() if v is not None]) / len(Tasks)
# print(AutoEvalColumn.precision.name, self.precision.value.name)
data_dict = {
"eval_name": self.eval_name, # not a column, just a save name,
AutoEvalColumn.precision.name: self.precision.value.name,
AutoEvalColumn.model_type.name: self.model_type.value.name,
AutoEvalColumn.model_type_symbol.name: self.model_type.value.symbol,
AutoEvalColumn.weight_type.name: self.weight_type.value.name,
AutoEvalColumn.architecture.name: self.architecture,
AutoEvalColumn.model.name: make_clickable_model(self.full_model),
AutoEvalColumn.revision.name: self.revision,
AutoEvalColumn.average.name: average,
AutoEvalColumn.license.name: self.license,
AutoEvalColumn.likes.name: self.likes,
AutoEvalColumn.params.name: self.num_params,
AutoEvalColumn.still_on_hub.name: self.still_on_hub,
}
for task in Tasks:
data_dict[task.value.col_name] = self.results[task.value.benchmark]
return data_dict
def get_request_file_for_model(requests_path, model_name, precision):
"""Selects the correct request file for a given model. Only keeps runs tagged as FINISHED"""
request_files = os.path.join(
requests_path,
f"{model_name}_eval_request_*.json",
)
request_files = glob.glob(request_files)
# Select correct request file (precision)
request_file = ""
request_files = sorted(request_files, reverse=True)
for tmp_request_file in request_files:
with open(tmp_request_file, "r") as f:
req_content = json.load(f)
if (
req_content["status"] in ["FINISHED"]
and req_content["precision"] == precision.split(".")[-1]
):
request_file = tmp_request_file
return request_file
def get_raw_eval_results(results_path: str, requests_path: str) -> list[EvalResult]:
"""From the path of the results folder root, extract all needed info for results"""
model_result_filepaths = []
for root, _, files in os.walk(results_path):
# We should only have json files in model results
if len(files) == 0 or any([not f.endswith(".json") for f in files]):
continue
# Sort the files by date
try:
files.sort(key=lambda x: x.removesuffix(".json").removeprefix("results_")[:-7])
except dateutil.parser._parser.ParserError:
files = [files[-1]]
for file in files:
model_result_filepaths.append(os.path.join(root, file))
eval_results = {}
for model_result_filepath in model_result_filepaths:
# Creation of result
eval_result = EvalResult.init_from_json_file(model_result_filepath)
eval_result.update_with_request_file(requests_path)
# Store results of same eval together
eval_name = eval_result.eval_name
if eval_name in eval_results.keys():
eval_results[eval_name].results.update({k: v for k, v in eval_result.results.items() if v is not None})
else:
eval_results[eval_name] = eval_result
results = []
for v in eval_results.values():
try:
v.to_dict() # we test if the dict version is complete
results.append(v)
except KeyError: # not all eval values present
continue
return results
def get_raw_model_results(results_path: str) -> list[EvalResult]:
"""From the path of the results folder root, extract all needed info for results"""
try:
with open(results_path) as fp:
data = json.load(fp)
except:
data = eval(open(results_path).read()) # a list of dicts
# print("data", len(data))
# print(data[0])
# {'config': {'model_name': 'ChatGPT-4o-latest (2024-09-03)',
# 'organization': 'OpenAI', 'license': 'Proprietary',
# 'knowledge_cutoff': '2023/10'},
# 'results': {'math-algebra':
# {'Score': 99.19484702, 'Avg Rank': 1.666666667, 'Min Rank': 1, 'Max Rank': 3},
# 'math-probability': {'Score': 100, 'Avg Rank': 1, 'Min Rank': 1, 'Max Rank': 1},
# 'reasoning-logical': {'Avg Rank': 1, 'Min Rank': 1, 'Max Rank': 1},
# 'overall': {'Avg Rank': 2, 'Min Rank': 2, 'Max Rank': 2}}}
eval_results = {}
for result in data:
# Creation of result
eval_result = ModelResult.init_from_json_dict(result)
# print(eval_result)
# ModelResult(eval_name='OpenAI_ChatGPT-4o-latest (2024-09-03)',
# full_model='OpenAI/ChatGPT-4o-latest (2024-09-03)',
# org='OpenAI', model='ChatGPT-4o-latest (2024-09-03)',
# results={'overall': None}, license='Proprietary', knowledge_cutoff='2023/10')
# all_num_results = eval_result.results
# def get_terminal_values(data):
# terminal_values = []
# for key, value in data.items():
# if isinstance(value, dict):
# terminal_values.extend(get_terminal_values(value))
# else:
# terminal_values.append(value)
# return terminal_values
# all_values = get_terminal_values(all_num_results)
# if 'N/A' in all_values:
# continue
eval_name = eval_result.eval_name
eval_results[eval_name] = eval_result
# # Store results of same eval together
# if eval_name in eval_results.keys():
# eval_results[eval_name].results.update({k: v for k, v in eval_result.results.items() if v is not None})
# else:
# eval_results[eval_name] = eval_result
results = []
for v in eval_results.values():
# print(v.to_dict())
# exit()
# {'eval_name': 'OpenAI_ChatGPT-4o-latest (2024-09-03)',
# 'Model': '<a target="_blank" href="https://huggingface.co/OpenAI/ChatGPT-4o-latest (2024-09-03)"
# style="color: var(--link-text-color); text-decoration: underline;text-decoration-style: dotted;">OpenAI/ChatGPT-4o-latest (2024-09-03)</a>',
# 'Hub License': 'Proprietary', 'Organization': 'OpenAI', 'Knowledge cutoff': '2023/10', 'Overall': None}
try:
v.to_dict() # we test if the dict version is complete
results.append(v)
except KeyError: # not all eval values present
continue
return results
|