File size: 21,737 Bytes
da92625
 
 
 
 
 
 
 
 
 
bfb3ae7
da92625
 
 
ee84fd2
37b3751
 
ee84fd2
 
 
bfb3ae7
 
 
 
 
ee84fd2
 
bfb3ae7
ee84fd2
bfb3ae7
 
 
4106f16
bfb3ae7
 
4106f16
2566764
 
bfb3ae7
 
 
 
2566764
ee84fd2
bfb3ae7
 
 
 
 
 
 
 
 
ee84fd2
 
 
bfb3ae7
2566764
bfb3ae7
ee84fd2
2566764
035c755
bbcf980
035c755
2566764
826f447
bfb3ae7
 
 
 
b47be80
 
37b3751
b47be80
 
 
 
 
 
 
ee84fd2
37b3751
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
979bed2
37b3751
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
04e5831
 
 
 
 
 
37b3751
04e5831
 
 
 
 
 
37b3751
04e5831
 
 
 
 
 
37b3751
979bed2
 
 
 
3d466ff
 
 
 
37b3751
 
 
 
ee84fd2
4106f16
 
ee84fd2
826f447
 
bfb3ae7
ee84fd2
 
da92625
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b47be80
da92625
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2642851
ee84fd2
 
 
bfb3ae7
 
 
 
 
 
ee84fd2
4106f16
 
 
 
 
 
 
 
 
 
ee84fd2
 
bfb3ae7
 
 
4106f16
 
 
 
 
37b3751
 
 
 
 
 
 
 
 
 
 
 
 
bfb3ae7
37b3751
 
 
ee84fd2
4106f16
 
 
 
 
 
 
ee84fd2
 
 
4106f16
37b3751
4106f16
 
 
 
ee84fd2
 
 
 
 
4106f16
ee84fd2
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
import glob
import json
import math
import os
from dataclasses import dataclass

import dateutil
import numpy as np

from src.display.formatting import make_clickable_model
from src.display.utils import AutoEvalColumn, ModelType, Tasks, Precision, WeightType, Domains
from src.submission.check_validity import is_model_on_hub


@dataclass
class RankResult:
    """Represents one the overall ranking table
    """
    eval_name: str
    full_model: str
    org: str 
    model: str
    results: dict
    license: str = "?"
    knowledge_cutoff: str = ""
    
    @classmethod
    def init_from_json_dict(self, data):
        
        config = data.get("config")
        # Get model and org
        model = config.get("model_name")
        org = config.get("organization")
        license = config.get("license")
        knowledge_cutoff = config.get("knowledge_cutoff")
        
        model_results = data.get("results")
        
        # Extract results available in this file (some results are split in several files)
        results = {}
        for domain in Domains:
            domain = domain.value
            results[domain.dimension] = model_results.get(domain.dimension).get(domain.metric, None)
        
        return self(
            eval_name=f"{org}_{model}",
            full_model=f"{org}/{model}",
            org=org,
            model=model,
            results=results,
            license=license,
            knowledge_cutoff=knowledge_cutoff
        )

    def to_dict(self):
        """Converts the Eval Result to a dict compatible with our dataframe display"""
        
        # score = 1 / self.results[Domains.dim0.dimension] if self.results[Domains.dim0.dimension] != 0 else 0
        # average = sum([v for v in self.results.values() if v is not None]) / len(Tasks)
        data_dict = {
            # "eval_name": self.eval_name,  # not a column, just a save name,
            # AutoEvalColumn.model.name: make_clickable_model(self.full_model),
            AutoEvalColumn.rank.name: None, # placeholder for the rank
            AutoEvalColumn.model.name: self.model,
            AutoEvalColumn.score.name: self.results[Domains.dim0.value.dimension],
            AutoEvalColumn.score_sd.name: None, # placeholder for the score sd 
            AutoEvalColumn.license.name: self.license,
            AutoEvalColumn.organization.name: self.org,
            AutoEvalColumn.knowledge_cutoff.name: self.knowledge_cutoff,

            # AutoEvalColumn.precision.name: self.precision.value.name,
            # AutoEvalColumn.model_type.name: self.model_type.value.name,
            # AutoEvalColumn.model_type_symbol.name
            # AutoEvalColumn.weight_type.name: self.weight_type.value.name,
            # AutoEvalColumn.architecture.name: self.architecture,
            # AutoEvalColumn.revision.name: self.revision,
            # AutoEvalColumn.average.name: average,
            # AutoEvalColumn.likes.name: self.likes,
            # AutoEvalColumn.params.name: self.num_params,
            # AutoEvalColumn.still_on_hub.name: self.still_on_hub,
        }
        


@dataclass
class ModelResult:
    """Represents one full evaluation. Built from a combination of the result and request file for a given run.
    """
    eval_name: str
    full_model: str
    org: str 
    model: str
    results: dict
    license: str = "?"
    knowledge_cutoff: str = ""
    
    @classmethod
    def init_from_json_dict(self, data):
        
        config = data.get("config")
        # Get model and org
        model = config.get("model_name")
        org = config.get("organization")
        license = config.get("license")
        knowledge_cutoff = config.get("knowledge_cutoff")
        
        model_results = data.get("results")
        new_results = {}
        for k, v in model_results.items():
            new_v = {}
            for kk, vv in v.items():
                if vv == 'N/A':
                    new_v[kk] = None
                else:
                    new_v[kk] = vv
                    
            new_results[k] = new_v
            
        # Extract results available in this file (some results are split in several files)
        # results = {}
        # for domain in Domains:
        #     domain = domain.value
        #     results[domain.dimension] = model_results.get(domain.dimension).get(domain.metric, None)
        
        return self(
            eval_name=f"{org}_{model}",
            full_model=f"{org}/{model}",
            org=org,
            model=model,
            results=new_results,
            license=license,
            knowledge_cutoff=knowledge_cutoff
        )

    def to_dict(self):
        """Converts the Eval Result to a dict compatible with our dataframe display"""
        
        data_dict = {
            # "eval_name": self.eval_name,  # not a column, just a save name,
            # AutoEvalColumn.model.name: make_clickable_model(self.full_model),
            # AutoEvalColumn.rank.name: None, # placeholder for the rank
            AutoEvalColumn.model.name: self.model,
            # AutoEvalColumn.score.name: self.results[Domains.dim0.value.dimension],
            # AutoEvalColumn.score_sd.name: None, # placeholder for the score sd 

            # AutoEvalColumn.score_overall.name: float(self.results.get("OVERALL").get("Average Score", None)),
            # AutoEvalColumn.score_math_algebra.name: float(self.results.get("Algebra").get("Average Score", None)),
            # AutoEvalColumn.score_math_geometry.name: float(self.results.get("Geometry").get("Average Score", None)),
            # AutoEvalColumn.score_math_probability.name: float(self.results.get("Probability").get("Average Score", None)),
            # AutoEvalColumn.score_reason_logical.name: float(self.results.get("Logical").get("Average Score", None)),
            # AutoEvalColumn.score_reason_social.name: float(self.results.get("Social").get("Average Score", None)),
            
            # AutoEvalColumn.sd_overall.name: float(self.results.get("OVERALL").get("Standard Deviation", None)),
            # AutoEvalColumn.sd_math_algebra.name: float(self.results.get("Algebra").get("Standard Deviation", None)),
            # AutoEvalColumn.sd_math_geometry.name: float(self.results.get("Geometry").get("Standard Deviation", None)),
            # AutoEvalColumn.sd_math_probability.name: float(self.results.get("Probability").get("Standard Deviation", None)),
            # AutoEvalColumn.sd_reason_logical.name: float(self.results.get("Logical").get("Standard Deviation", None)),
            # AutoEvalColumn.sd_reason_social.name: float(self.results.get("Social").get("Standard Deviation", None)),

            # AutoEvalColumn.rank_overall.name: int(self.results.get("OVERALL").get("Rank", None)),
            # AutoEvalColumn.rank_math_algebra.name: int(self.results.get("Algebra").get("Rank", None)),
            # AutoEvalColumn.rank_math_geometry.name: int(self.results.get("Geometry").get("Rank", None)),
            # AutoEvalColumn.rank_math_probability.name: int(self.results.get("Probability").get("Rank", None)),
            # AutoEvalColumn.rank_reason_logical.name: int(self.results.get("Logical").get("Rank", None)),
            # AutoEvalColumn.rank_reason_social.name: int(self.results.get("Social").get("Rank", None)),
            
            AutoEvalColumn.score_overall.name: self.results.get("OVERALL").get("Average Score", None) if self.results.get("OVERALL") else None,
            AutoEvalColumn.score_math_algebra.name: self.results.get("Algebra").get("Average Score", None) if self.results.get("Algebra") else None,
            AutoEvalColumn.score_math_geometry.name: self.results.get("Geometry").get("Average Score", None) if self.results.get("Geometry") else None,
            AutoEvalColumn.score_math_probability.name: self.results.get("Probability").get("Average Score", None) if self.results.get("Probability") else None,
            AutoEvalColumn.score_reason_logical.name: self.results.get("Logical").get("Average Score", None) if self.results.get("Logical") else None,
            AutoEvalColumn.score_reason_social.name: self.results.get("Social").get("Average Score", None) if self.results.get("Social") else None,
            
            AutoEvalColumn.sd_overall.name: self.results.get("OVERALL").get("Standard Deviation", None) if self.results.get("OVERALL") else None,
            AutoEvalColumn.sd_math_algebra.name: self.results.get("Algebra").get("Standard Deviation", None) if self.results.get("Algebra") else None,
            AutoEvalColumn.sd_math_geometry.name: self.results.get("Geometry").get("Standard Deviation", None) if self.results.get("Geometry") else None,
            AutoEvalColumn.sd_math_probability.name: self.results.get("Probability").get("Standard Deviation", None) if self.results.get("Probability") else None,
            AutoEvalColumn.sd_reason_logical.name: self.results.get("Logical").get("Standard Deviation", None) if self.results.get("Logical") else None,
            AutoEvalColumn.sd_reason_social.name: self.results.get("Social").get("Standard Deviation", None) if self.results.get("Social") else None,

            AutoEvalColumn.rank_overall.name: self.results.get("OVERALL").get("Rank", None) if self.results.get("OVERALL") else None,
            AutoEvalColumn.rank_math_algebra.name: self.results.get("Algebra").get("Rank", None) if self.results.get("Algebra") else None,
            AutoEvalColumn.rank_math_geometry.name: self.results.get("Geometry").get("Rank", None) if self.results.get("Geometry") else None,
            AutoEvalColumn.rank_math_probability.name: self.results.get("Probability").get("Rank", None) if self.results.get("Probability") else None,
            AutoEvalColumn.rank_reason_logical.name: self.results.get("Logical").get("Rank", None) if self.results.get("Logical") else None,
            AutoEvalColumn.rank_reason_social.name: self.results.get("Social").get("Rank", None) if self.results.get("Social") else None,
            
            AutoEvalColumn.score_chemistry.name: self.results.get("Chemistry").get("Average Score", None) if self.results.get("Chemistry") else None,
            AutoEvalColumn.sd_chemistry.name: self.results.get("Chemistry").get("Standard Deviation", None) if self.results.get("Chemistry") else None,
            AutoEvalColumn.rank_chemistry.name: self.results.get("Chemistry").get("Rank", None) if self.results.get("Chemistry") else None,
            
            AutoEvalColumn.score_cpp.name: self.results.get("CPP").get("Average Score", None) if self.results.get("CPP") else None,
            AutoEvalColumn.sd_cpp.name: self.results.get("CPP").get("Standard Deviation", None) if self.results.get("CPP") else None,
            AutoEvalColumn.rank_cpp.name: self.results.get("CPP").get("Rank", None) if self.results.get("CPP") else None,
            
            AutoEvalColumn.license.name: self.license,
            AutoEvalColumn.organization.name: self.org,
            AutoEvalColumn.knowledge_cutoff.name: self.knowledge_cutoff,
        }

        # for task in Tasks:
        #     data_dict[task.value.col_name] = self.results[task.value.benchmark]

        # for domain in Domains:
        #     data_dict[domain.value.col_name] = self.results[domain.value.dimension]

        return data_dict

@dataclass
class EvalResult:
    """Represents one full evaluation. Built from a combination of the result and request file for a given run.
    """
    eval_name: str # org_model_precision (uid)
    full_model: str # org/model (path on hub)
    org: str 
    model: str
    revision: str # commit hash, "" if main
    results: dict
    precision: Precision = Precision.Unknown
    model_type: ModelType = ModelType.Unknown # Pretrained, fine tuned, ...
    weight_type: WeightType = WeightType.Original # Original or Adapter
    architecture: str = "Unknown" 
    license: str = "?"
    likes: int = 0
    num_params: int = 0
    date: str = "" # submission date of request file
    still_on_hub: bool = False

    @classmethod
    def init_from_json_file(self, json_filepath):
        """Inits the result from the specific model result file"""
        with open(json_filepath) as fp:
            data = json.load(fp)

        config = data.get("config")

        # Precision
        precision = Precision.from_str(config.get("model_dtype"))

        # Get model and org
        org_and_model = config.get("model_name", config.get("model_args", None))
        org_and_model = org_and_model.split("/", 1)

        if len(org_and_model) == 1:
            org = None
            model = org_and_model[0]
            result_key = f"{model}_{precision.value.name}"
        else:
            org = org_and_model[0]
            model = org_and_model[1]
            result_key = f"{org}_{model}_{precision.value.name}"
        full_model = "/".join(org_and_model)

        still_on_hub, _, model_config = is_model_on_hub(
            full_model, config.get("model_sha", "main"), trust_remote_code=True, test_tokenizer=False
        )
        architecture = "?"
        if model_config is not None:
            architectures = getattr(model_config, "architectures", None)
            if architectures:
                architecture = ";".join(architectures)

        # Extract results available in this file (some results are split in several files)
        results = {}
        for task in Tasks:
            task = task.value

            # We average all scores of a given metric (not all metrics are present in all files)
            accs = np.array([v.get(task.metric, None) for k, v in data["results"].items() if task.benchmark == k])
            if accs.size == 0 or any([acc is None for acc in accs]):
                continue

            mean_acc = np.mean(accs) * 100.0
            results[task.benchmark] = mean_acc

        return self(
            eval_name=result_key,
            full_model=full_model,
            org=org,
            model=model,
            results=results,
            precision=precision,  
            revision= config.get("model_sha", ""),
            still_on_hub=still_on_hub,
            architecture=architecture
        )

    def update_with_request_file(self, requests_path):
        """Finds the relevant request file for the current model and updates info with it"""
        request_file = get_request_file_for_model(requests_path, self.full_model, self.precision.value.name)

        try:
            with open(request_file, "r") as f:
                request = json.load(f)
            self.model_type = ModelType.from_str(request.get("model_type", ""))
            self.weight_type = WeightType[request.get("weight_type", "Original")]
            self.license = request.get("license", "?")
            self.likes = request.get("likes", 0)
            self.num_params = request.get("params", 0)
            self.date = request.get("submitted_time", "")
        except Exception:
            print(f"Could not find request file for {self.org}/{self.model} with precision {self.precision.value.name}")

    def to_dict(self):
        """Converts the Eval Result to a dict compatible with our dataframe display"""
        average = sum([v for v in self.results.values() if v is not None]) / len(Tasks)
        # print(AutoEvalColumn.precision.name, self.precision.value.name)
        data_dict = {
            "eval_name": self.eval_name,  # not a column, just a save name,
            AutoEvalColumn.precision.name: self.precision.value.name,
            AutoEvalColumn.model_type.name: self.model_type.value.name,
            AutoEvalColumn.model_type_symbol.name: self.model_type.value.symbol,
            AutoEvalColumn.weight_type.name: self.weight_type.value.name,
            AutoEvalColumn.architecture.name: self.architecture,
            AutoEvalColumn.model.name: make_clickable_model(self.full_model),
            AutoEvalColumn.revision.name: self.revision,
            AutoEvalColumn.average.name: average,
            AutoEvalColumn.license.name: self.license,
            AutoEvalColumn.likes.name: self.likes,
            AutoEvalColumn.params.name: self.num_params,
            AutoEvalColumn.still_on_hub.name: self.still_on_hub,
        }

        for task in Tasks:
            data_dict[task.value.col_name] = self.results[task.value.benchmark]

        return data_dict


def get_request_file_for_model(requests_path, model_name, precision):
    """Selects the correct request file for a given model. Only keeps runs tagged as FINISHED"""
    request_files = os.path.join(
        requests_path,
        f"{model_name}_eval_request_*.json",
    )
    request_files = glob.glob(request_files)

    # Select correct request file (precision)
    request_file = ""
    request_files = sorted(request_files, reverse=True)
    for tmp_request_file in request_files:
        with open(tmp_request_file, "r") as f:
            req_content = json.load(f)
            if (
                req_content["status"] in ["FINISHED"]
                and req_content["precision"] == precision.split(".")[-1]
            ):
                request_file = tmp_request_file
    return request_file


def get_raw_eval_results(results_path: str, requests_path: str) -> list[EvalResult]:
    """From the path of the results folder root, extract all needed info for results"""
    model_result_filepaths = []

    for root, _, files in os.walk(results_path):
        # We should only have json files in model results
        if len(files) == 0 or any([not f.endswith(".json") for f in files]):
            continue

        # Sort the files by date
        try:
            files.sort(key=lambda x: x.removesuffix(".json").removeprefix("results_")[:-7])
        except dateutil.parser._parser.ParserError:
            files = [files[-1]]

        for file in files:
            model_result_filepaths.append(os.path.join(root, file))

    eval_results = {}
    for model_result_filepath in model_result_filepaths:
        # Creation of result
        eval_result = EvalResult.init_from_json_file(model_result_filepath)
        eval_result.update_with_request_file(requests_path)

        # Store results of same eval together
        eval_name = eval_result.eval_name
        if eval_name in eval_results.keys():
            eval_results[eval_name].results.update({k: v for k, v in eval_result.results.items() if v is not None})
        else:
            eval_results[eval_name] = eval_result

    results = []
    for v in eval_results.values():
        try:
            v.to_dict() # we test if the dict version is complete
            results.append(v)
        except KeyError:  # not all eval values present
            continue

    return results


def get_raw_model_results(results_path: str) -> list[EvalResult]:
    """From the path of the results folder root, extract all needed info for results"""

    try:
        with open(results_path) as fp:
            data = json.load(fp)
    except:
        data = eval(open(results_path).read()) # a list of dicts   

    # print("data", len(data))
    # print(data[0]) 
    # {'config': {'model_name': 'ChatGPT-4o-latest (2024-09-03)', 
    # 'organization': 'OpenAI', 'license': 'Proprietary', 
    # 'knowledge_cutoff': '2023/10'}, 
    # 'results': {'math-algebra': 
    # {'Score': 99.19484702, 'Avg Rank': 1.666666667, 'Min Rank': 1, 'Max Rank': 3}, 
    # 'math-probability': {'Score': 100, 'Avg Rank': 1, 'Min Rank': 1, 'Max Rank': 1}, 
    # 'reasoning-logical': {'Avg Rank': 1, 'Min Rank': 1, 'Max Rank': 1}, 
    # 'overall': {'Avg Rank': 2, 'Min Rank': 2, 'Max Rank': 2}}}
    eval_results = {}

    for result in data:
        # Creation of result
        eval_result = ModelResult.init_from_json_dict(result)
        # print(eval_result)
        # ModelResult(eval_name='OpenAI_ChatGPT-4o-latest (2024-09-03)', 
        # full_model='OpenAI/ChatGPT-4o-latest (2024-09-03)', 
        # org='OpenAI', model='ChatGPT-4o-latest (2024-09-03)', 
        # results={'overall': None}, license='Proprietary', knowledge_cutoff='2023/10')

        # all_num_results = eval_result.results

        # def get_terminal_values(data):
        #     terminal_values = []
        #     for key, value in data.items():
        #         if isinstance(value, dict):
        #             terminal_values.extend(get_terminal_values(value))
        #         else:
        #             terminal_values.append(value)
        #     return terminal_values
    
        # all_values = get_terminal_values(all_num_results)
        
        # if 'N/A' in all_values:
        #     continue
            
        eval_name = eval_result.eval_name
        eval_results[eval_name] = eval_result

        # # Store results of same eval together
        # if eval_name in eval_results.keys():
        #     eval_results[eval_name].results.update({k: v for k, v in eval_result.results.items() if v is not None})
        # else:
        #     eval_results[eval_name] = eval_result

    results = []
    for v in eval_results.values():
        # print(v.to_dict())
        # exit()
        # {'eval_name': 'OpenAI_ChatGPT-4o-latest (2024-09-03)', 
        # 'Model': '<a target="_blank" href="https://huggingface.co/OpenAI/ChatGPT-4o-latest (2024-09-03)" 
        # style="color: var(--link-text-color); text-decoration: underline;text-decoration-style: dotted;">OpenAI/ChatGPT-4o-latest (2024-09-03)</a>', 
        # 'Hub License': 'Proprietary', 'Organization': 'OpenAI', 'Knowledge cutoff': '2023/10', 'Overall': None}
        try:
            v.to_dict() # we test if the dict version is complete
            results.append(v)
        except KeyError:  # not all eval values present
            continue
    
    return results