|
from typing import Any, Dict, List |
|
from schema import Schema |
|
from data import build_scenario, build_cl_scenario, CLScenario, MergedDataset |
|
from data.dataloader import build_dataloader |
|
|
|
from methods.elasticdnn.api.online_model_v2 import ElasticDNN_OnlineModel |
|
from methods.elasticdnn.model.base import ElasticDNNUtil |
|
from methods.gem.gem_el_bert import OnlineGEMModel, GEMAlg |
|
from utils.dl.common.model import LayerActivation, get_module, get_parameter, set_module |
|
from copy import deepcopy |
|
from bert import ElasticBertUtil |
|
import torch |
|
import torch.nn.functional as F |
|
import sys |
|
import tqdm |
|
from torch import nn |
|
from utils.common.log import logger |
|
|
|
|
|
from experiments.utils.elasticfm_cl import init_online_model, elasticfm_cl |
|
|
|
device = 'cuda' |
|
app_name = 'secls' |
|
sd_sparsity = 0.8 |
|
|
|
class ElasticDNN_SeClsOnlineModel(ElasticDNN_OnlineModel): |
|
|
|
@torch.no_grad() |
|
def sd_feedback_to_md(self, after_da_sd, unpruned_indexes_of_layers): |
|
self.models_dict['sd'] = after_da_sd |
|
self.before_da_md = deepcopy(self.models_dict['md']) |
|
|
|
logger.info('\n\nsurrogate DNN feedback to master DNN...\n\n') |
|
|
|
|
|
cur_unpruned_indexes = None |
|
cur_unpruned_indexes_name = None |
|
|
|
for p_name, p in self.models_dict['sd'].named_parameters(): |
|
matched_md_param = self.get_md_matched_param_of_sd_param(p_name) |
|
logger.debug(f'if feedback: {p_name}') |
|
if matched_md_param is None: |
|
continue |
|
logger.debug(f'start feedback: {p_name}, {p.size()} -> {matched_md_param.size()}') |
|
|
|
|
|
|
|
if p_name in unpruned_indexes_of_layers.keys(): |
|
cur_unpruned_indexes = unpruned_indexes_of_layers[p_name] |
|
cur_unpruned_indexes_name = p_name |
|
|
|
if p.size() != matched_md_param.size(): |
|
logger.debug(f'cur unpruned indexes: {cur_unpruned_indexes_name}, {cur_unpruned_indexes.size()}') |
|
|
|
if p.dim() == 1: |
|
new_p = deepcopy(matched_md_param) |
|
new_p[cur_unpruned_indexes] = p |
|
elif p.dim() == 2: |
|
if p.size(0) < matched_md_param.size(0): |
|
new_p = deepcopy(matched_md_param) |
|
new_p[cur_unpruned_indexes] = p |
|
else: |
|
new_p = deepcopy(matched_md_param) |
|
new_p[:, cur_unpruned_indexes] = p |
|
p = new_p |
|
|
|
assert p.size() == matched_md_param.size(), f'{p.size()}, {matched_md_param.size()}' |
|
|
|
if 'classifier' in p_name: |
|
continue |
|
|
|
|
|
assert hasattr(self, 'last_trained_cls_indexes') |
|
print(self.last_trained_cls_indexes) |
|
|
|
diff = self._compute_diff(matched_md_param, p) |
|
|
|
matched_md_param.copy_(p) |
|
logger.debug(f'SPECIFIC FOR CL HEAD | end feedback: {p_name}, diff: {diff:.6f}') |
|
else: |
|
diff = self._compute_diff(matched_md_param, (matched_md_param + p) / 2.) |
|
matched_md_param.copy_((matched_md_param + p) / 2.) |
|
logger.debug(f'end feedback: {p_name}, diff: {diff:.6f}') |
|
|
|
def add_cls_in_head(self, num_cls): |
|
head: nn.Linear = get_module(self.models_dict['md'], 'classifier') |
|
|
|
new_head = nn.Linear(head.in_features, head.out_features + num_cls, head.bias is not None, device=self.device) |
|
|
|
|
|
|
|
|
|
new_head.weight.data[0: head.out_features] = deepcopy(head.weight.data) |
|
new_head.bias.data[0: head.out_features] = deepcopy(head.bias.data) |
|
set_module(self.models_dict['md'], 'classifier', new_head) |
|
set_module(self.models_dict['fm'], 'classifier', new_head) |
|
|
|
|
|
def get_accuracy(self, test_loader, *args, **kwargs): |
|
acc = 0 |
|
sample_num = 0 |
|
|
|
self.to_eval_mode() |
|
|
|
with torch.no_grad(): |
|
pbar = tqdm.tqdm(enumerate(test_loader), total=len(test_loader), dynamic_ncols=True, leave=False) |
|
for batch_index, (x, y) in pbar: |
|
for k, v in x.items(): |
|
if isinstance(v, torch.Tensor): |
|
x[k] = v.to(self.device) |
|
y = y.to(self.device) |
|
output = self.infer(x) |
|
pred = F.softmax(output, dim=1).argmax(dim=1) |
|
correct = torch.eq(pred, y).sum().item() |
|
acc += correct |
|
sample_num += len(y) |
|
|
|
pbar.set_description(f'cur_batch_total: {len(y)}, cur_batch_correct: {correct}, ' |
|
f'cur_batch_acc: {(correct / len(y)):.4f}') |
|
|
|
acc /= sample_num |
|
return acc |
|
|
|
def get_elastic_dnn_util(self) -> ElasticDNNUtil: |
|
return ElasticBertUtil() |
|
|
|
def get_fm_matched_param_of_md_param(self, md_param_name): |
|
|
|
self_param_name = md_param_name |
|
fm = self.models_dict['fm'] |
|
if any([k in self_param_name for k in ['fbs', 'ab', 'embeddings','ln']]): |
|
return None |
|
|
|
p = get_parameter(self.models_dict['md'], self_param_name) |
|
if p.dim() == 0: |
|
return None |
|
elif p.dim() == 1 and 'LayerNorm' in self_param_name and 'weight' in self_param_name: |
|
return get_parameter(fm, self_param_name) |
|
|
|
|
|
if ('query' in self_param_name or 'key' in self_param_name or \ |
|
'value' in self_param_name) and ('weight' in self_param_name): |
|
|
|
ss = self_param_name.split('.') |
|
|
|
fm_qkv_name = '.'.join(ss[0: -1]) + '.fc' |
|
fm_qkv = get_module(fm, fm_qkv_name) |
|
|
|
fm_abs_name = '.'.join(ss[0: -1]) + '.ab' |
|
fm_abs = get_module(fm, fm_abs_name) |
|
|
|
|
|
|
|
if not hasattr(fm_abs, '_mul_lora_weight'): |
|
logger.debug(f'set _mul_lora_weight in {fm_abs_name}') |
|
setattr(fm_abs, '_mul_lora_weight', |
|
nn.Parameter(fm_abs[1].weight @ fm_abs[0].weight)) |
|
|
|
return torch.cat([ |
|
fm_qkv.weight.data, |
|
fm_abs._mul_lora_weight.data |
|
], dim=0) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
elif 'dense' in self_param_name and 'weight' in self_param_name: |
|
fm_param_name = self_param_name.replace('.linear', '') |
|
return get_parameter(fm, fm_param_name) |
|
|
|
|
|
|
|
|
|
|
|
else: |
|
|
|
return None |
|
|
|
def update_fm_param(self, md_param_name, cal_new_fm_param_by_md_param): |
|
if not ('query' in md_param_name or 'key' in md_param_name or 'value' in md_param_name): |
|
matched_fm_param_ref = self.get_fm_matched_param_of_md_param(md_param_name) |
|
matched_fm_param_ref.copy_(cal_new_fm_param_by_md_param) |
|
else: |
|
new_fm_attn_weight, new_fm_lora_weight = torch.chunk(cal_new_fm_param_by_md_param, 2, 0) |
|
|
|
ss = md_param_name.split('.') |
|
fm = self.models_dict['fm'] |
|
|
|
|
|
fm_qkv_name = '.'.join(ss[0: -1]) + '.fc' |
|
fm_qkv = get_module(fm, fm_qkv_name) |
|
fm_qkv.weight.data.copy_(new_fm_attn_weight) |
|
|
|
|
|
fm_abs_name = '.'.join(ss[0: -1]) + '.ab' |
|
fm_abs = get_module(fm, fm_abs_name) |
|
fm_abs._mul_lora_weight.data.copy_(new_fm_lora_weight) |
|
|
|
def get_md_matched_param_of_fm_param(self, fm_param_name): |
|
return super().get_md_matched_param_of_fm_param(fm_param_name) |
|
|
|
def get_md_matched_param_of_sd_param(self, sd_param_name): |
|
|
|
|
|
|
|
self_param_name = sd_param_name |
|
md = self.models_dict['md'] |
|
if any([k in self_param_name for k in ['fbs', 'ab', 'embeddings']]): |
|
return None |
|
|
|
p = get_parameter(self.models_dict['sd'], self_param_name) |
|
if p.dim() == 0: |
|
return None |
|
elif p.dim() == 1 and 'LayerNorm' in self_param_name and 'weight' in self_param_name: |
|
return get_parameter(md, self_param_name) |
|
|
|
if 'classifier' in self_param_name: |
|
return get_parameter(md, self_param_name) |
|
|
|
|
|
if ('query' in self_param_name or 'key' in self_param_name or \ |
|
'value' in self_param_name) and ('weight' in self_param_name): |
|
|
|
|
|
return get_parameter(md, self_param_name) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
elif 'intermediate.dense.0.weight' in self_param_name: |
|
fm_param_name = '.'.join(self_param_name.split('.')[0: -2]) + '.linear.weight' |
|
return get_parameter(md, fm_param_name) |
|
|
|
elif 'output.dense' in self_param_name and 'weight' in self_param_name: |
|
fm_param_name = self_param_name |
|
return get_parameter(md, fm_param_name) |
|
|
|
else: |
|
|
|
return None |
|
|
|
def get_task_head_params(self): |
|
head = get_module(self.models_dict['sd'], 'classifier') |
|
return list(head.parameters()) |
|
|
|
class SeClsOnlineGEMModel(OnlineGEMModel): |
|
def get_trained_params(self): |
|
qkv_and_norm_params = [p for n, p in self.models_dict['main'].named_parameters() if 'query' in n or 'key' in n or 'value' in n or 'dense' in n or 'LayerNorm' in n] |
|
return qkv_and_norm_params |
|
|
|
def forward_to_get_task_loss(self, x, y): |
|
return F.cross_entropy(self.infer(x), y) |
|
|
|
def add_cls_in_head(self, num_cls): |
|
return |
|
|
|
head: nn.Linear = get_module(self.models_dict['main'], 'head') |
|
|
|
new_head = nn.Linear(head.in_features, head.out_features + num_cls, head.bias is not None, device=self.device) |
|
new_head.weight.data[0: head.out_features] = deepcopy(head.weight.data) |
|
new_head.bias.data[0: head.out_features] = deepcopy(head.bias.data) |
|
set_module(self.models_dict['main'], 'head', new_head) |
|
|
|
def infer(self, x, *args, **kwargs): |
|
return self.models_dict['main'](**x) |
|
|
|
def get_accuracy(self, test_loader, *args, **kwargs): |
|
_d = test_loader.dataset |
|
from data import build_dataloader, split_dataset |
|
if _d.__class__.__name__ == '_SplitDataset' and _d.underlying_dataset.__class__.__name__ == 'MergedDataset': |
|
print('\neval on merged datasets') |
|
|
|
merged_full_dataset = _d.underlying_dataset.datasets |
|
ratio = len(_d.keys) / len(_d.underlying_dataset) |
|
|
|
if int(len(_d) * ratio) == 0: |
|
ratio = 1. |
|
|
|
|
|
|
|
|
|
|
|
|
|
test_loaders = [] |
|
for d in merged_full_dataset: |
|
n = int(len(d) * ratio) |
|
if n == 0: |
|
n = len(d) |
|
sub_dataset = split_dataset(d, min(max(test_loader.batch_size, n), len(d)))[0] |
|
loader = build_dataloader(sub_dataset, min(test_loader.batch_size, n), test_loader.num_workers, False, None) |
|
test_loaders += [loader] |
|
|
|
accs = [self.get_accuracy(loader) for loader in test_loaders] |
|
print(accs) |
|
return sum(accs) / len(accs) |
|
|
|
|
|
|
|
|
|
acc = 0 |
|
sample_num = 0 |
|
|
|
self.to_eval_mode() |
|
|
|
with torch.no_grad(): |
|
pbar = tqdm.tqdm(enumerate(test_loader), total=len(test_loader), dynamic_ncols=True, leave=False) |
|
for batch_index, (x, y) in pbar: |
|
for k, v in x.items(): |
|
if isinstance(v, torch.Tensor): |
|
x[k] = v.to(self.device) |
|
y = y.to(self.device) |
|
output = self.infer(x) |
|
pred = F.softmax(output, dim=1).argmax(dim=1) |
|
correct = torch.eq(pred, y).sum().item() |
|
acc += correct |
|
sample_num += len(y) |
|
|
|
|
|
|
|
|
|
pbar.set_description(f'cur_batch_total: {len(y)}, cur_batch_correct: {correct}, ' |
|
f'cur_batch_acc: {(correct / len(y)):.4f}') |
|
|
|
acc /= sample_num |
|
return acc |
|
|
|
settings = { |
|
'involve_fm': True |
|
} |
|
|
|
scenario = build_scenario( |
|
source_datasets_name=['HL5Domains-ApexAD2600Progressive', 'HL5Domains-CanonG3', 'HL5Domains-CreativeLabsNomadJukeboxZenXtra40GB', |
|
'HL5Domains-NikonCoolpix4300'], |
|
target_datasets_order=['HL5Domains-Nokia6610','Liu3Domains-Computer', 'Liu3Domains-Router', 'Liu3Domains-Speaker', |
|
'Ding9Domains-DiaperChamp', 'Ding9Domains-Norton', 'Ding9Domains-LinksysRouter', |
|
'Ding9Domains-MicroMP3', 'Ding9Domains-Nokia6600', 'Ding9Domains-CanonPowerShotSD500', |
|
'Ding9Domains-ipod', 'Ding9Domains-HitachiRouter', 'Ding9Domains-CanonS100', |
|
'SemEval-Laptop', 'SemEval-Rest'] * 2 + ['Liu3Domains-Computer', 'Liu3Domains-Router'], |
|
da_mode='close_set', |
|
data_dirs={ |
|
**{k: f'/data/zql/datasets/nlp_asc_19_domains/dat/absa/Bing5Domains/asc/{k.split("-")[1]}' |
|
for k in ['HL5Domains-ApexAD2600Progressive', 'HL5Domains-CanonG3', 'HL5Domains-CreativeLabsNomadJukeboxZenXtra40GB', |
|
'HL5Domains-NikonCoolpix4300', 'HL5Domains-Nokia6610']}, |
|
|
|
**{k: f'/data/zql/datasets/nlp_asc_19_domains/dat/absa/Bing3Domains/asc/{k.split("-")[1]}' |
|
for k in ['Liu3Domains-Computer', 'Liu3Domains-Router', 'Liu3Domains-Speaker']}, |
|
|
|
**{k: f'/data/zql/datasets/nlp_asc_19_domains/dat/absa/Bing9Domains/asc/{k.split("-")[1]}' |
|
for k in ['Ding9Domains-DiaperChamp', 'Ding9Domains-Norton', 'Ding9Domains-LinksysRouter', |
|
'Ding9Domains-MicroMP3', 'Ding9Domains-Nokia6600', 'Ding9Domains-CanonPowerShotSD500', |
|
'Ding9Domains-ipod', 'Ding9Domains-HitachiRouter', 'Ding9Domains-CanonS100']}, |
|
|
|
**{k: f'/data/zql/datasets/nlp_asc_19_domains/dat/absa/XuSemEval/asc/14/{k.split("-")[1].lower()}' |
|
for k in ['SemEval-Laptop', 'SemEval-Rest']}, |
|
}, |
|
) |
|
|
|
scenario = build_cl_scenario( |
|
da_scenario=scenario, |
|
target_datasets_name=['HL5Domains-Nokia6610'] * 16, |
|
num_classes_per_task=5, |
|
max_num_tasks=16, |
|
data_dirs={ |
|
**{k: f'/data/zql/datasets/nlp_asc_19_domains/dat/absa/Bing5Domains/asc/{k.split("-")[1]}' |
|
for k in ['HL5Domains-Nokia6610']} |
|
} |
|
) |
|
|
|
elasticfm_model = ElasticDNN_SeClsOnlineModel('secls', init_online_model( |
|
'new_impl/nlp/mobilebert/sentiment_classification/results/cls_md_w_fbs_index.py/20231019/999999-222456-result/models/fm_best.pt', |
|
'new_impl/nlp/mobilebert/sentiment_classification/results/cls_md_w_fbs_index.py/20231019/999999-222456-result/models/md_best.pt', |
|
'cls', __file__ |
|
), device, { |
|
'md_to_fm_alpha': 0.2, |
|
'fm_to_md_alpha': 0.2 |
|
}) |
|
|
|
da_alg = GEMAlg |
|
da_model = SeClsOnlineGEMModel |
|
da_alg_hyp = { |
|
'train_batch_size': 4, |
|
'val_batch_size': 16, |
|
'num_workers': 4, |
|
'optimizer': 'AdamW', |
|
'optimizer_args': {'lr': 1e-4, 'betas': [0.9, 0.999], 'weight_decay': 0.01}, |
|
'scheduler': '', |
|
'scheduler_args': {}, |
|
'num_iters': 100, |
|
'val_freq': 20, |
|
'n_memories': 4 , |
|
'n_inputs': 3 * 224 * 224, |
|
'margin': 0.5, |
|
'num_my_iters': 0, |
|
'sd_sparsity': 0.7 |
|
} |
|
|
|
|
|
elasticfm_cl( |
|
[app_name], |
|
[scenario], |
|
[elasticfm_model], |
|
[da_alg], |
|
[da_alg_hyp], |
|
[da_model], |
|
device, |
|
settings, |
|
__file__, |
|
"results" |
|
) |
|
|