|
import torch |
|
from new_impl.cv.elasticdnn.api.model import ElasticDNN_OfflineVQAFMModel, ElasticDNN_OfflineVQAMDModel |
|
from new_impl.cv.elasticdnn.api.algs.fm_lora import ElasticDNN_FMLoRAAlg |
|
from new_impl.cv.elasticdnn.model.base import ElasticDNNUtil |
|
from new_impl.cv.elasticdnn.pipeline.offline.fm_lora.base import FMLoRA_Util |
|
from blip import FMLoRA_blip_Util |
|
from new_impl.cv.elasticdnn.pipeline.offline.fm_to_md.base import FM_to_MD_Util |
|
from utils.dl.common.model import LayerActivation, get_module, get_parameter, set_module |
|
from utils.common.exp import save_models_dict_for_init, get_res_save_dir |
|
from data import build_scenario |
|
from utils.common.log import logger |
|
import torch.nn.functional as F |
|
import sys |
|
|
|
|
|
class ElasticDNN_blip_OfflineVQAFMModel(ElasticDNN_OfflineVQAFMModel): |
|
def generate_md_by_reducing_width(self, reducing_width_ratio, samples: torch.Tensor): |
|
|
|
|
|
raise NotImplementedError |
|
|
|
def get_feature_hook(self) -> LayerActivation: |
|
return LayerActivation(get_module(self.models_dict['main'], 'cls'), True, self.device) |
|
|
|
def get_elastic_dnn_util(self) -> ElasticDNNUtil |
|
raise NotImplementedError |
|
|
|
def forward_to_get_task_loss(self, x, y, *args, **kwargs): |
|
self.to_train_mode() |
|
|
|
o = self.infer(x) |
|
|
|
|
|
|
|
|
|
return F.binary_cross_entropy_with_logits(o, y) * y.shape[1] |
|
|
|
def get_lora_util(self) -> FMLoRA_Util: |
|
return FMLoRA_git_Util() |
|
|
|
def get_task_head_params(self): |
|
head = get_module(self.models_dict['main'], 'cls') |
|
params_name = {k for k, v in head.named_parameters()} |
|
logger.info(f'task head params: {params_name}') |
|
return list(head.parameters()) |
|
|
|
|
|
class ElasticDNN_blip_OfflineVQAMDModel(ElasticDNN_OfflineVQAMDModel): |
|
def get_feature_hook(self) -> LayerActivation: |
|
return LayerActivation(get_module(self.models_dict['main'], 'cls'), True, self.device) |
|
|
|
def forward_to_get_task_loss(self, x, y, *args, **kwargs): |
|
self.to_train_mode() |
|
o = self.infer(x) |
|
return nn.functional.binary_cross_entropy_with_logits(o, y) * y.shape[1] |
|
|
|
|
|
if __name__ == '__main__': |
|
from utils.dl.common.env import set_random_seed |
|
set_random_seed(1) |
|
|
|
scenario = build_scenario( |
|
source_datasets_name=['VQA_split1'], |
|
target_datasets_order=['VQA_split1_c'] * 1, |
|
da_mode='close_set', |
|
data_dirs={ |
|
'VQA_split1': '/data/zql/datasets/vqav2', |
|
'VQA_split1_c': '/data/zql/datasets/vqav2' |
|
}, |
|
) |
|
|
|
|
|
torch.cuda.set_device(1) |
|
device = 'cuda' |
|
from transformers import BlipForQuestionAnswering |
|
from git import git |
|
model = git(scenario.num_classes) |
|
|
|
fm_models_dict_path = save_models_dict_for_init({ |
|
'main': model |
|
}, __file__, 'fm_git') |
|
|
|
fm_model = ElasticDNN_blip_OfflineVQAFMModel('fm', fm_models_dict_path, device) |
|
|
|
|
|
models = { |
|
'fm': fm_model |
|
} |
|
fm_lora_alg = ElasticDNN_FMLoRAAlg(models, get_res_save_dir(__file__, sys.argv[0])) |
|
|
|
|
|
sample_dataset = list(scenario.get_offline_datasets().values())[0]['train'] |
|
sample = sample_dataset[0][0] |
|
|
|
for k, v in sample.items(): |
|
sample[k] = v.unsqueeze(0) |
|
|
|
|
|
|
|
from utils.dl.common.lr_scheduler import get_linear_schedule_with_warmup |
|
fm_lora_alg.run(scenario, hyps={ |
|
'launch_tbboard': False, |
|
|
|
'samples_size': sample, |
|
|
|
'ab_r':8 , |
|
'train_batch_size': 64, |
|
'val_batch_size': 512, |
|
'num_workers': 16, |
|
'optimizer': 'AdamW', |
|
'optimizer_args': {'lr': 1e-4, 'betas': [0.9, 0.999]}, |
|
'scheduler': 'LambdaLR', |
|
'scheduler_args': {'lr_lambda': get_linear_schedule_with_warmup(10000, 310000)}, |
|
'num_iters': 320000, |
|
'val_freq': 400, |
|
|
|
|
|
}) |