|
from methods.elasticdnn.hugging_face.user_impl import HuggingFaceModelAPI |
|
from utils.dl.common.model import LayerActivation, get_module |
|
import torch |
|
import torch.nn.functional as F |
|
from torch import nn |
|
import tqdm |
|
|
|
|
|
class ViTHuggingFaceModelAPI(HuggingFaceModelAPI): |
|
def get_feature_hook(self, fm: nn.Module, device) -> LayerActivation: |
|
return LayerActivation(get_module(fm, 'head'), True, device) |
|
|
|
def get_task_head_params(self, fm: nn.Module): |
|
head = get_module(fm, 'head') |
|
return list(head.parameters()) |
|
|
|
def get_qkv_proj_ff1_ff2_layer_names(self): |
|
return [[f'blocks.{i}.attn.qkv', f'blocks.{i}.attn.proj', f'blocks.{i}.mlp.fc1', f'blocks.{i}.mlp.fc2', ] for i in range(12)] |
|
|
|
def get_accuracy(self, fm: nn.Module, test_loader, device, *args, **kwargs): |
|
acc = 0 |
|
sample_num = 0 |
|
|
|
fm.eval() |
|
|
|
with torch.no_grad(): |
|
pbar = tqdm.tqdm(enumerate(test_loader), total=len(test_loader), dynamic_ncols=True, leave=False) |
|
for batch_index, (x, y) in pbar: |
|
x, y = x.to(device), y.to(device) |
|
output = fm(x) |
|
pred = F.softmax(output, dim=1).argmax(dim=1) |
|
correct = torch.eq(pred, y).sum().item() |
|
acc += correct |
|
sample_num += len(y) |
|
|
|
pbar.set_description(f'cur_batch_total: {len(y)}, cur_batch_correct: {correct}, ' |
|
f'cur_batch_acc: {(correct / len(y)):.4f}') |
|
|
|
acc /= sample_num |
|
return acc |
|
|
|
def infer(self, fm: nn.Module, x, *args, **kwargs): |
|
return fm(x) |
|
|
|
def forward_to_get_task_loss(self, fm: nn.Module, x, y, *args, **kwargs): |
|
return F.cross_entropy(self.infer(fm, x), y) |