EdgeTA / new_impl /cv /cls_md_wo_fbs.py
LINC-BIT's picture
Upload 1912 files
b84549f verified
import torch
import sys
from torch import nn
from new_impl.cv.dnns.vit import make_softmax_prunable
from new_impl.cv.elasticdnn.api.model import ElasticDNN_OfflineClsFMModel, ElasticDNN_OfflineClsMDModel
from new_impl.cv.elasticdnn.api.algs.md_pretraining_wo_fbs import ElasticDNN_MDPretrainingWoFBSAlg
from new_impl.cv.elasticdnn.model.base import ElasticDNNUtil
from new_impl.cv.elasticdnn.pipeline.offline.fm_to_md.base import FM_to_MD_Util
from new_impl.cv.elasticdnn.pipeline.offline.fm_to_md.vit import FM_to_MD_ViT_Util
from new_impl.cv.elasticdnn.pipeline.offline.fm_lora.base import FMLoRA_Util
from new_impl.cv.elasticdnn.pipeline.offline.fm_lora.vit import FMLoRA_ViT_Util
from new_impl.cv.elasticdnn.model.vit import ElasticViTUtil
from utils.dl.common.model import LayerActivation, get_module, get_parameter
from utils.common.exp import save_models_dict_for_init, get_res_save_dir
from data import build_scenario
from utils.dl.common.loss import CrossEntropyLossSoft
import torch.nn.functional as F
# class ElasticDNN_ViT_OfflineClsFMModel(ElasticDNN_OfflineClsFMModel):
# def generate_md_by_reducing_width(self, reducing_width_ratio, samples: torch.Tensor):
# return FM_to_MD_ViT_Util().init_md_from_fm_by_reducing_width_with_perf_test(self.models_dict['main'],
# reducing_width_ratio, samples).to(self.device)
# def get_feature_hook(self) -> LayerActivation:
# return LayerActivation(get_module(self.models_dict['main'], 'head'), True, self.device)
# def get_elastic_dnn_util(self) -> ElasticDNNUtil:
# return ElasticViTUtil()
# def forward_to_get_task_loss(self, x, y, *args, **kwargs):
# return F.cross_entropy(self.infer(x), y)
# def get_lora_util(self) -> FMLoRA_Util:
# return FMLoRA_ViT_Util()
# def get_task_head_params(self):
# head = get_module(self.models_dict['main'], 'head')
# return list(head.parameters())
# class ElasticDNN_ViT_OfflineClsMDModel(ElasticDNN_OfflineClsMDModel):
# def __init__(self, name: str, models_dict_path: str, device: str):
# super().__init__(name, models_dict_path, device)
# self.distill_criterion = CrossEntropyLossSoft()
# def get_feature_hook(self) -> LayerActivation:
# return LayerActivation(get_module(self.models_dict['main'], 'head'), True, self.device)
# def forward_to_get_task_loss(self, x, y, *args, **kwargs):
# return F.cross_entropy(self.infer(x), y)
# def get_distill_loss(self, student_output, teacher_output):
# return self.distill_criterion(student_output, teacher_output)
# def get_matched_param_of_fm(self, self_param_name, fm: nn.Module):
# # only between qkv.weight, norm.weight/bias
# if any([k in self_param_name for k in ['fbs', 'cls_token', 'pos_embed']]):
# return None
# p = get_parameter(self.models_dict['main'], self_param_name)
# if p.dim() == 0:
# return None
# elif p.dim() == 1 and 'norm' in self_param_name:
# return get_parameter(fm, self_param_name)
# # 1. xx.qkv.to_qkv.yy to xx.qkv.qkv.aa and xx.qkv.abs.zz
# if 'to_qkv.weight' in self_param_name:
# ss = self_param_name.split('.')
# fm_qkv_name = '.'.join(ss[0: -2]) + '.qkv'
# fm_qkv = get_module(fm, fm_qkv_name)
# fm_abs_name = '.'.join(ss[0: -2]) + '.abs'
# fm_abs = get_module(fm, fm_abs_name)
# return torch.cat([
# fm_qkv.weight.data, # task-agnositc params
# torch.cat([(_abs[0].weight.T @ _abs[1].weight.T).T for _abs in fm_abs], dim=0) # task-specific params (LoRA)
# ], dim=0)
# # elif 'to_qkv.bias' in self_param_name:
# # ss = self_param_name.split('.')
# # fm_qkv_name = '.'.join(ss[0: -2]) + '.qkv.bias'
# # return get_parameter(fm, fm_qkv_name)
# # elif 'mlp.fc1' in self_param_name:
# # fm_param_name = self_param_name.replace('.linear', '')
# # return get_parameter(fm, fm_param_name)
# else:
# # return get_parameter(fm, self_param_name)
# return None
# # def get_matched_param_of_fm(self, self_param_name, fm: nn.Module):
# # if any([k in self_param_name for k in ['fbs', 'cls_token', 'pos_embed']]):
# # return None
# # # 1. xx.qkv.to_qkv.yy to xx.qkv.qkv.aa and xx.qkv.abs.zz
# # if 'to_qkv.weight' in self_param_name:
# # ss = self_param_name.split('.')
# # fm_qkv_name = '.'.join(ss[0: -2]) + '.qkv'
# # fm_qkv = get_module(fm, fm_qkv_name)
# # fm_abs_name = '.'.join(ss[0: -2]) + '.abs'
# # fm_abs = get_module(fm, fm_abs_name)
# # return torch.cat([
# # fm_qkv.weight.data, # task-agnositc params
# # torch.cat([(_abs[0].weight.T @ _abs[1].weight.T).T for _abs in fm_abs], dim=0) # task-specific params (LoRA)
# # ], dim=0)
# # elif 'to_qkv.bias' in self_param_name:
# # ss = self_param_name.split('.')
# # fm_qkv_name = '.'.join(ss[0: -2]) + '.qkv.bias'
# # return get_parameter(fm, fm_qkv_name)
# # elif 'mlp.fc1' in self_param_name:
# # fm_param_name = self_param_name.replace('.linear', '')
# # return get_parameter(fm, fm_param_name)
# # else:
# # return get_parameter(fm, self_param_name)
class ElasticDNN_ViT_OfflineClsFMModel(ElasticDNN_OfflineClsFMModel):
def generate_md_by_reducing_width(self, reducing_width_ratio, samples: torch.Tensor):
return FM_to_MD_ViT_Util().init_md_from_fm_by_reducing_width_with_perf_test(self.models_dict['main'],
reducing_width_ratio, samples).to(self.device)
def get_feature_hook(self) -> LayerActivation:
return LayerActivation(get_module(self.models_dict['main'], 'classifier'), True, self.device)
def get_elastic_dnn_util(self) -> ElasticDNNUtil:
return ElasticViTUtil()
def forward_to_get_task_loss(self, x, y, *args, **kwargs):
return F.cross_entropy(self.infer(x).logits, y)
def get_lora_util(self) -> FMLoRA_Util:
return FMLoRA_ViT_Util()
def get_task_head_params(self):
head = get_module(self.models_dict['main'], 'classifier')
return list(head.parameters())
class ElasticDNN_ViT_OfflineClsMDModel(ElasticDNN_OfflineClsMDModel):
def __init__(self, name: str, models_dict_path: str, device: str):
super().__init__(name, models_dict_path, device)
self.distill_criterion = CrossEntropyLossSoft()
def get_feature_hook(self) -> LayerActivation:
return LayerActivation(get_module(self.models_dict['main'], 'classifier'), True, self.device)
def forward_to_get_task_loss(self, x, y, *args, **kwargs):
return F.cross_entropy(self.infer(x).logits, y)
def get_distill_loss(self, student_output, teacher_output):
return self.distill_criterion(student_output, teacher_output)
def get_matched_param_of_fm(self, self_param_name, fm: nn.Module):
# only between qkv.weight, norm.weight/bias
if any([k in self_param_name for k in ['fbs', 'cls_token', 'pos_embed']]):
return None
p = get_parameter(self.models_dict['main'], self_param_name)
if p.dim() == 0:
return None
elif p.dim() == 1 and 'norm' in self_param_name and 'weight' in self_param_name:
return get_parameter(fm, self_param_name)
# 1. xx.qkv.to_qkv.yy to xx.qkv.qkv.aa and xx.qkv.abs.zz
if 'qkv.weight' in self_param_name:
ss = self_param_name.split('.')
fm_qkv_name = '.'.join(ss[0: -1]) + '.qkv'
fm_qkv = get_module(fm, fm_qkv_name)
fm_abs_name = '.'.join(ss[0: -1]) + '.abs'
fm_abs = get_module(fm, fm_abs_name)
return torch.cat([
fm_qkv.weight.data, # task-agnositc params
torch.cat([(_abs[0].weight.T @ _abs[1].weight.T).T for _abs in fm_abs], dim=0) # task-specific params (LoRA)
], dim=0)
# elif 'to_qkv.bias' in self_param_name:
# ss = self_param_name.split('.')
# fm_qkv_name = '.'.join(ss[0: -2]) + '.qkv.bias'
# return get_parameter(fm, fm_qkv_name)
elif 'mlp.fc1' in self_param_name and 'weight' in self_param_name:
fm_param_name = self_param_name.replace('.linear', '')
return get_parameter(fm, fm_param_name)
elif 'mlp.fc2' in self_param_name and 'weight' in self_param_name:
fm_param_name = self_param_name
return get_parameter(fm, fm_param_name)
else:
# return get_parameter(fm, self_param_name)
return None
if __name__ == '__main__':
from utils.dl.common.env import set_random_seed
set_random_seed(1)
# 1. init model
from dnns.vit import vit_b_16
fm_models_dict_path = 'new_impl/cv/results/cvt_cls.py/20231019/999994-133914-/data/zql/concept-drift-in-edge-projects/UniversalElasticNet/new_impl/cv/cvt_cls.py/models/fm_best.pt'
fm_models_dict = torch.load(fm_models_dict_path)
fm_models_dict['main'] = make_softmax_prunable(fm_models_dict['main'])
fm_models_dict_path = save_models_dict_for_init(fm_models_dict, __file__, 'fm_cvt_cls_lora')
md_models_dict_path = save_models_dict_for_init({
'main': -1
}, __file__, 'md_cvt_cls_lora')
torch.cuda.set_device(1)
device = 'cuda'
fm_model = ElasticDNN_ViT_OfflineClsFMModel('fm', fm_models_dict_path, device)
md_model = ElasticDNN_ViT_OfflineClsMDModel('md', md_models_dict_path, device)
# 2. init alg
models = {
'fm': fm_model,
'md': md_model
}
fm_to_md_alg = ElasticDNN_MDPretrainingWoFBSAlg(models, get_res_save_dir(__file__, sys.argv[0]))
# 3. init scenario
scenario = build_scenario(
source_datasets_name=['GTA5Cls', 'SuperviselyPersonCls'],
target_datasets_order=['CityscapesCls', 'BaiduPersonCls'] * 15,
da_mode='close_set',
data_dirs={
'GTA5Cls': '/data/zql/datasets/gta5_for_cls_task',
'SuperviselyPersonCls': '/data/zql/datasets/supervisely_person_for_cls_task',
'CityscapesCls': '/data/zql/datasets/cityscapes_for_cls_task',
'BaiduPersonCls': '/data/zql/datasets/baidu_person_for_cls_task'
},
)
from utils.dl.common.lr_scheduler import get_linear_schedule_with_warmup
fm_to_md_alg.run(scenario, hyps={
'launch_tbboard': False,
'samples_size': (1, 3, 224, 224),
'generate_md_width_ratio': 4,
'train_batch_size': 128,
'val_batch_size': 512,
'num_workers': 16,
'optimizer': 'AdamW',
'optimizer_args': {'lr': 1e-4, 'betas': [0.9, 0.999], 'weight_decay': 0.01},
'scheduler': 'LambdaLR',
'scheduler_args': {'lr_lambda': get_linear_schedule_with_warmup(10000, 70000)},
'num_iters': 80000,
'val_freq': 400,
'distill_loss_weight': 1.0
})
# TODO:
# 1. train MD before inserting FBS?