EdgeTA / experiments /utils /elasticfm_da.py
LINC-BIT's picture
Upload 1912 files
b84549f verified
import sys
from utils.dl.common.env import set_random_seed
set_random_seed(1)
from typing import List
from data.dataloader import build_dataloader
from data import Scenario
from methods.elasticdnn.api.online_model_v2 import ElasticDNN_OnlineModel
import torch
import sys
from torch import nn
from methods.elasticdnn.api.model import ElasticDNN_OfflineSegFMModel, ElasticDNN_OfflineSegMDModel
from methods.elasticdnn.api.algs.md_pretraining_wo_fbs import ElasticDNN_MDPretrainingWoFBSAlg
from methods.elasticdnn.model.base import ElasticDNNUtil
from methods.elasticdnn.pipeline.offline.fm_to_md.base import FM_to_MD_Util
from methods.elasticdnn.pipeline.offline.fm_to_md.vit import FM_to_MD_ViT_Util
from methods.elasticdnn.pipeline.offline.fm_lora.base import FMLoRA_Util
from methods.elasticdnn.pipeline.offline.fm_lora.vit import FMLoRA_ViT_Util
from methods.elasticdnn.model.vit import ElasticViTUtil
from utils.common.file import ensure_dir
from utils.dl.common.model import LayerActivation, get_module, get_parameter
from utils.common.exp import save_models_dict_for_init, get_res_save_dir
from data import build_scenario
from utils.dl.common.loss import CrossEntropyLossSoft
import torch.nn.functional as F
from utils.dl.common.env import create_tbwriter
import os
from utils.common.log import logger
from utils.common.data_record import write_json
# from methods.shot.shot import OnlineShotModel
from methods.feat_align.main import OnlineFeatAlignModel, FeatAlignAlg
import tqdm
from methods.feat_align.mmd import mmd_rbf
from methods.base.alg import BaseAlg
import shutil
from methods.base.model import BaseModel
def elasticfm_da(apps_name: List[str],
scenarios: List[Scenario],
elasticfm_models: List[ElasticDNN_OnlineModel],
da_algs: List[BaseAlg],
da_alg_hyps: List[dict],
da_models: List[BaseModel],
device,
settings,
__entry_file__,
tag=None):
involve_fm = settings['involve_fm']
tasks_name = apps_name
online_models = elasticfm_models
log_dir = get_res_save_dir(__entry_file__, tag=tag)
tb_writer = create_tbwriter(os.path.join(log_dir, 'tb_log'), False)
res = []
global_avg_after_acc = 0.
global_iter = 0
for domain_index, _ in enumerate(scenarios[0].target_domains_order):
avg_before_acc, avg_after_acc = 0., 0.
cur_res = {}
for task_name, online_model, scenario, da_alg, da_model, da_alg_hyp in zip(tasks_name, online_models, scenarios, da_algs, da_models, da_alg_hyps):
cur_target_domain_name = scenario.target_domains_order[scenario.cur_domain_index]
if cur_target_domain_name in da_alg_hyp:
da_alg_hyp = da_alg_hyp[cur_target_domain_name]
logger.info(f'use dataset-specific hyps')
online_model.set_sd_sparsity(da_alg_hyp['sd_sparsity'])
sd, unpruned_indexes_of_layers = online_model.generate_sd_by_target_samples(scenario.get_online_cur_domain_samples_for_training(da_alg_hyp['train_batch_size']))
tmp_sd_path = os.path.join(log_dir, 'tmp_sd_model.pt')
torch.save({'main': sd}, tmp_sd_path)
if 'cls' not in task_name and 'pos' not in task_name and 'vqa' not in task_name:
da_model_args = [f'{task_name}/{domain_index}',
tmp_sd_path,
device,
scenario.num_classes]
else:
da_model_args = [f'{task_name}/{domain_index}',
tmp_sd_path,
device]
da_metrics, after_da_model = da_alg(
{'main': da_model(*da_model_args)},
os.path.join(log_dir, f'{task_name}/{domain_index}')
).run(scenario, {_k: _v for _k, _v in da_alg_hyp.items() if _k != 'sd_sparsity'})
os.remove(tmp_sd_path)
if domain_index > 0:
shutil.rmtree(os.path.join(log_dir, f'{task_name}/{domain_index}/backup_codes'))
online_model.sd_feedback_to_md(after_da_model['main'].models_dict['main'], unpruned_indexes_of_layers)
online_model.md_feedback_to_self_fm()
accs = da_metrics['accs']
before_acc = accs[0]['acc']
after_acc = accs[-1]['acc']
avg_before_acc += before_acc
avg_after_acc += after_acc
for _acc in accs:
tb_writer.add_scalar(f'total_acc', _acc['acc'], _acc['iter'] + global_iter) # TODO: bug here
global_iter += _acc['iter'] + 1
tb_writer.add_scalars(f'accs/{task_name}', dict(before=before_acc, after=after_acc), domain_index)
tb_writer.add_scalar(f'times/{task_name}', da_metrics['time'], domain_index)
scenario.next_domain()
logger.info(f"task: {task_name}, domain {domain_index}, acc: {before_acc:.4f} -> "
f"{after_acc:.4f} ({da_metrics['time']:.2f}s)")
cur_res[task_name] = da_metrics
if involve_fm:
for online_model in online_models:
online_model.aggregate_fms_to_self_fm([m.models_dict['fm'] for m in online_models])
for online_model in online_models:
online_model.fm_feedback_to_md()
avg_before_acc /= len(tasks_name)
avg_after_acc /= len(tasks_name)
tb_writer.add_scalars(f'accs/apps_avg', dict(before=avg_before_acc, after=avg_after_acc), domain_index)
logger.info(f"--> domain {domain_index}, avg_acc: {avg_before_acc:.4f} -> "
f"{avg_after_acc:.4f}")
res += [cur_res]
global_avg_after_acc += avg_after_acc
write_json(os.path.join(log_dir, 'res.json'), res, backup=False)
global_avg_after_acc /= (domain_index + 1)
logger.info(f'-----> final metric: {global_avg_after_acc:.4f}')
write_json(os.path.join(log_dir, f'res_{global_avg_after_acc:.4f}.json'), res, backup=False)
def init_online_model(fm_models_dict_path, md_models_dict_path, task_name, __entry_file__):
fm_models = torch.load(fm_models_dict_path)
md_models = torch.load(md_models_dict_path)
online_models_dict_path = save_models_dict_for_init({
'fm': fm_models['main'],
'md': md_models['main'],
'sd': None,
'indexes': md_models['indexes'],
'bn_stats': md_models['bn_stats']
}, __entry_file__, task_name)
return online_models_dict_path