EdgeTA / dnns /yolov3 /yolo_fpn.py
LINC-BIT's picture
Upload 1912 files
b84549f verified
#!/usr/bin/env python
# -*- encoding: utf-8 -*-
# Copyright (c) Megvii Inc. All rights reserved.
import torch
import torch.nn as nn
from .network_blocks import BaseConv
class YOLOFPN(nn.Module):
"""
YOLOFPN module. Darknet 53 is the default backbone of this model.
"""
def __init__(
self
):
super().__init__()
# self.backbone = Darknet(depth)
# self.in_features = in_features
# out 1
self.out1_cbl = self._make_cbl(512, 256, 1)
self.out1 = self._make_embedding([256, 512], 512 + 256)
# out 2
self.out2_cbl = self._make_cbl(256, 128, 1)
self.out2 = self._make_embedding([128, 256], 256 + 128)
# upsample
self.upsample = nn.Upsample(scale_factor=2, mode="nearest")
def _make_cbl(self, _in, _out, ks):
return BaseConv(_in, _out, ks, stride=1, act="lrelu")
def _make_embedding(self, filters_list, in_filters):
m = nn.Sequential(
*[
self._make_cbl(in_filters, filters_list[0], 1),
self._make_cbl(filters_list[0], filters_list[1], 3),
self._make_cbl(filters_list[1], filters_list[0], 1),
self._make_cbl(filters_list[0], filters_list[1], 3),
self._make_cbl(filters_list[1], filters_list[0], 1),
]
)
return m
def load_pretrained_model(self, filename="./weights/darknet53.mix.pth"):
with open(filename, "rb") as f:
state_dict = torch.load(f, map_location="cpu")
print("loading pretrained weights...")
self.backbone.load_state_dict(state_dict)
def forward(self, backbone_out_features):
"""
Args:
inputs (Tensor): input image.
Returns:
Tuple[Tensor]: FPN output features..
"""
# backbone
# out_features = self.backbone(inputs)
out_features = backbone_out_features
x2, x1, x0 = out_features
# yolo branch 1
x1_in = self.out1_cbl(x0)
x1_in = self.upsample(x1_in)
x1_in = torch.cat([x1_in, x1], 1)
out_dark4 = self.out1(x1_in)
# yolo branch 2
x2_in = self.out2_cbl(out_dark4)
x2_in = self.upsample(x2_in)
x2_in = torch.cat([x2_in, x2], 1)
out_dark3 = self.out2(x2_in)
outputs = (out_dark3, out_dark4, x0)
return outputs