EdgeTA / new_impl /cv /resnet /extract_submodel.py
LINC-BIT's picture
Upload 1912 files
b84549f verified
raw
history blame
33.8 kB
from abc import abstractmethod
from copy import deepcopy
import enum
import torch
from torch import nn
import os
from .model_fbs import DomainDynamicConv2d
#from methods.utils.data import get_source_dataloader, get_source_normal_aug_dataloader, get_target_dataloaders
#from models.resnet_cifar.model_manager import ResNetCIFARManager
from utils.common.others import get_cur_time_str
from utils.dl.common.env import set_random_seed
from utils.dl.common.model import get_model_latency, get_model_size, get_module, set_module
from utils.common.log import logger
from utils.third_party.nni_new.compression.pytorch.speedup import ModelSpeedup
from utils.third_party.nni_new.compression.pytorch.utils.mask_conflict import GroupMaskConflict, ChannelMaskConflict, CatMaskPadding
def fix_mask_conflict(masks, model=None, dummy_input=None, traced=None, fix_group=False, fix_channel=True, fix_padding=False):
if isinstance(masks, str):
# if the input is the path of the mask_file
assert os.path.exists(masks)
masks = torch.load(masks)
assert len(masks) > 0, 'Mask tensor cannot be empty'
# if the user uses the model and dummy_input to trace the model, we
# should get the traced model handly, so that, we only trace the
# model once, GroupMaskConflict and ChannelMaskConflict will reuse
# this traced model.
if traced is None:
assert model is not None and dummy_input is not None
training = model.training
model.eval()
# We need to trace the model in eval mode
traced = torch.jit.trace(model, dummy_input)
model.train(training)
if fix_group:
fix_group_mask = GroupMaskConflict(masks, model, dummy_input, traced)
masks = fix_group_mask.fix_mask()
if fix_channel:
fix_channel_mask = ChannelMaskConflict(masks, model, dummy_input, traced)
masks = fix_channel_mask.fix_mask()
if fix_padding:
padding_cat_mask = CatMaskPadding(masks, model, dummy_input, traced)
masks = padding_cat_mask.fix_mask()
return masks
class FeatureBoosting(nn.Module):
def __init__(self, w: torch.Tensor):
super(FeatureBoosting, self).__init__()
assert w.dim() == 1
self.w = nn.Parameter(w.unsqueeze(0).unsqueeze(2).unsqueeze(3), requires_grad=False)
def forward(self, x):
return x * self.w
class FBSSubModelExtractor:
def extract_submodel_via_a_sample(self, fbs_model: nn.Module, sample: torch.Tensor):
assert sample.dim() == 4 and sample.size(0) == 1
fbs_model.eval()
o1 = fbs_model(sample)
pruning_info = {}
pruning_masks = {}
for layer_name, layer in fbs_model.named_modules():
if not isinstance(layer, DomainDynamicConv2d):
continue
cur_pruning_mask = {'weight': torch.zeros_like(layer.raw_conv2d.weight.data)}
if layer.raw_conv2d.bias is not None:
cur_pruning_mask['bias'] = torch.zeros_like(layer.raw_conv2d.bias.data)
w = get_module(fbs_model, layer_name).cached_w.squeeze()
unpruned_filters_index = w.nonzero(as_tuple=True)[0]
pruning_info[layer_name] = w
cur_pruning_mask['weight'][unpruned_filters_index, ...] = 1.
if layer.raw_conv2d.bias is not None:
cur_pruning_mask['bias'][unpruned_filters_index, ...] = 1.
pruning_masks[layer_name + '.0'] = cur_pruning_mask
no_gate_model = deepcopy(fbs_model)
for name, layer in no_gate_model.named_modules():
if not isinstance(layer, DomainDynamicConv2d):
continue
# layer.bn.weight.data.mul_(pruning_info[name])
set_module(no_gate_model, name, nn.Sequential(layer.raw_conv2d, layer.bn, nn.Identity()))
# fixed_pruning_masks = fix_mask_conflict(pruning_masks, fbs_model, sample.size(), None, True, True, True)
tmp_mask_path = f'tmp_mask_{get_cur_time_str()}_{os.getpid()}.pth'
torch.save(pruning_masks, tmp_mask_path)
pruned_model = no_gate_model
pruned_model.eval()
model_speedup = ModelSpeedup(pruned_model, sample, tmp_mask_path, sample.device)
model_speedup.speedup_model()
os.remove(tmp_mask_path)
# add feature boosting module
for layer_name, feature_boosting_w in pruning_info.items():
feature_boosting_w = feature_boosting_w[feature_boosting_w.nonzero(as_tuple=True)[0]]
set_module(pruned_model, layer_name + '.2', FeatureBoosting(feature_boosting_w))
pruned_model_size = get_model_size(pruned_model, True)
pruned_model.eval()
o2 = pruned_model(sample)
diff = ((o1 - o2) ** 2).sum()
logger.info(f'pruned model size: {pruned_model_size:.3f}MB, diff: {diff}')
return pruned_model
@abstractmethod
def get_final_w(self, fbs_model: nn.Module, samples: torch.Tensor, layer_name: str, w: torch.Tensor):
pass
@abstractmethod
def generate_pruning_strategy(self, fbs_model: nn.Module, samples: torch.Tensor):
pass
def extract_submodel_via_samples(self, fbs_model: nn.Module, samples: torch.Tensor):
assert samples.dim() == 4
fbs_model = deepcopy(fbs_model)
# fbs_model.eval()
# fbs_model(samples)
self.generate_pruning_strategy(fbs_model, samples)
pruning_info = {}
pruning_masks = {}
for layer_name, layer in fbs_model.named_modules():
if not isinstance(layer, DomainDynamicConv2d):
continue
cur_pruning_mask = {'weight': torch.zeros_like(layer.raw_conv2d.weight.data)}
if layer.raw_conv2d.bias is not None:
cur_pruning_mask['bias'] = torch.zeros_like(layer.raw_conv2d.bias.data)
w = get_module(fbs_model, layer_name).cached_w.squeeze() # 2-dim
w = self.get_final_w(fbs_model, samples, layer_name, w)
unpruned_filters_index = w.nonzero(as_tuple=True)[0]
pruning_info[layer_name] = w
cur_pruning_mask['weight'][unpruned_filters_index, ...] = 1.
if layer.raw_conv2d.bias is not None:
cur_pruning_mask['bias'][unpruned_filters_index, ...] = 1.
pruning_masks[layer_name + '.0'] = cur_pruning_mask
no_gate_model = deepcopy(fbs_model)
for name, layer in no_gate_model.named_modules():
if not isinstance(layer, DomainDynamicConv2d):
continue
# layer.bn.weight.data.mul_(pruning_info[name])
set_module(no_gate_model, name, nn.Sequential(layer.raw_conv2d, layer.bn, nn.Identity()))
# fixed_pruning_masks = fix_mask_conflict(pruning_masks, fbs_model, sample.size(), None, True, True, True)
tmp_mask_path = f'tmp_mask_{get_cur_time_str()}_{os.getpid()}.pth'
torch.save(pruning_masks, tmp_mask_path)
pruned_model = no_gate_model
pruned_model.eval()
model_speedup = ModelSpeedup(pruned_model, samples[0:1], tmp_mask_path, samples.device)
model_speedup.speedup_model()
os.remove(tmp_mask_path)
# add feature boosting module
for layer_name, feature_boosting_w in pruning_info.items():
feature_boosting_w = feature_boosting_w[feature_boosting_w.nonzero(as_tuple=True)[0]]
set_module(pruned_model, layer_name + '.2', FeatureBoosting(feature_boosting_w))
return pruned_model, pruning_info
def extract_submodel_via_samples_and_last_submodel(self, fbs_model: nn.Module, samples: torch.Tensor,
last_submodel: nn.Module, last_pruning_info: dict):
assert samples.dim() == 4
fbs_model = deepcopy(fbs_model)
# fbs_model.eval()
# fbs_model(samples)
self.generate_pruning_strategy(fbs_model, samples)
pruning_info = {}
pruning_masks = {}
# some tricks
incrementally_updated_layers = []
for layer_name, layer in fbs_model.named_modules():
if not isinstance(layer, DomainDynamicConv2d):
continue
cur_pruning_mask = {'weight': torch.zeros_like(layer.raw_conv2d.weight.data)}
if layer.raw_conv2d.bias is not None:
cur_pruning_mask['bias'] = torch.zeros_like(layer.raw_conv2d.bias.data)
w = get_module(fbs_model, layer_name).cached_w.squeeze() # 2-dim
w = self.get_final_w(fbs_model, samples, layer_name, w)
unpruned_filters_index = w.nonzero(as_tuple=True)[0]
pruning_info[layer_name] = w
cur_pruning_mask['weight'][unpruned_filters_index, ...] = 1.
if layer.raw_conv2d.bias is not None:
cur_pruning_mask['bias'][unpruned_filters_index, ...] = 1.
pruning_masks[layer_name + '.0'] = cur_pruning_mask
# some tricks
if last_pruning_info is not None:
last_w = last_pruning_info[layer_name]
intersection_ratio = ((w > 0) * (last_w > 0)).sum() / (last_w > 0).sum()
if intersection_ratio > 0.:
incrementally_updated_layers += [layer_name] # that is, only similar layers are transferable
no_gate_model = deepcopy(fbs_model)
for name, layer in no_gate_model.named_modules():
if not isinstance(layer, DomainDynamicConv2d):
continue
# layer.bn.weight.data.mul_(pruning_info[name])
set_module(no_gate_model, name, nn.Sequential(layer.raw_conv2d, layer.bn, nn.Identity()))
# fixed_pruning_masks = fix_mask_conflict(pruning_masks, fbs_model, sample.size(), None, True, True, True)
tmp_mask_path = f'tmp_mask_{get_cur_time_str()}_{os.getpid()}.pth'
torch.save(pruning_masks, tmp_mask_path)
pruned_model = no_gate_model
pruned_model.eval()
model_speedup = ModelSpeedup(pruned_model, samples[0:1], tmp_mask_path, samples.device)
model_speedup.speedup_model()
os.remove(tmp_mask_path)
# add feature boosting module
for layer_name, feature_boosting_w in pruning_info.items():
feature_boosting_w = feature_boosting_w[feature_boosting_w.nonzero(as_tuple=True)[0]]
set_module(pruned_model, layer_name + '.2', FeatureBoosting(feature_boosting_w))
# some tricks
# incrementally updating (borrow some weights from last_pruned_model)
for layer_name in incrementally_updated_layers:
cur_filter_i, last_filter_i = 0, 0
for i, (w_factor, last_w_factor) in enumerate(zip(pruning_info[layer_name], last_pruning_info[layer_name])):
if w_factor > 0 and last_w_factor > 0: # the filter is shared
cur_conv2d, last_conv2d = get_module(pruned_model, layer_name + '.0'), get_module(last_submodel, layer_name + '.0')
cur_conv2d.weight.data[cur_filter_i] = last_conv2d.weight.data[last_filter_i]
cur_bn, last_bn = get_module(pruned_model, layer_name + '.1'), get_module(last_submodel, layer_name + '.1')
cur_bn.weight.data[cur_filter_i] = last_bn.weight.data[last_filter_i]
cur_bn.bias.data[cur_filter_i] = last_bn.bias.data[last_filter_i]
cur_bn.running_mean.data[cur_filter_i] = last_bn.running_mean.data[last_filter_i]
cur_bn.running_var.data[cur_filter_i] = last_bn.running_var.data[last_filter_i]
cur_fw, last_fw = get_module(pruned_model, layer_name + '.2'), get_module(last_submodel, layer_name + '.2')
cur_fw.w.data[0, cur_filter_i] = last_fw.w.data[0, last_filter_i]
if w_factor > 0:
cur_filter_i += 1
if last_w_factor > 0:
last_filter_i += 1
return pruned_model, pruning_info
def absorb_sub_model(self, fbs_model: nn.Module, sub_model: nn.Module, pruning_info: dict, alpha=1.):
if alpha == 0.:
return
for layer_name, feature_boosting_w in pruning_info.items():
unpruned_filters_index = feature_boosting_w.nonzero(as_tuple=True)[0]
fbs_layer = get_module(fbs_model, layer_name)
sub_model_layer = get_module(sub_model, layer_name)
for fi_in_sub_layer, fi_in_fbs_layer in enumerate(unpruned_filters_index):
fbs_layer.raw_conv2d.weight.data[fi_in_fbs_layer] = (1. - alpha) * fbs_layer.raw_conv2d.weight.data[fi_in_fbs_layer] + \
alpha * sub_model_layer[0].weight.data[fi_in_sub_layer]
for k in ['weight', 'bias', 'running_mean', 'running_var']:
getattr(fbs_layer.bn, k).data[fi_in_fbs_layer] = (1. - alpha) * getattr(fbs_layer.bn, k).data[fi_in_fbs_layer] + \
alpha * getattr(sub_model_layer[1], k).data[fi_in_sub_layer]
class DAFBSSubModelExtractor(FBSSubModelExtractor):
def __init__(self) -> None:
super().__init__()
# self.debug_sample_i = 0
# self.last_final_ws = None
@abstractmethod
def generate_pruning_strategy(self, fbs_model: nn.Module, samples: torch.Tensor):
with torch.no_grad():
fbs_model.eval()
self.cur_output = fbs_model(samples)
@abstractmethod
def get_final_w(self, fbs_model: nn.Module, samples: torch.Tensor, layer_name: str, w: torch.Tensor):
# import matplotlib.pyplot as plt
# plt.imshow(w.cpu().numpy(), cmap='Greys')
# # plt.colorbar()
# plt.xlabel('Filters')
# plt.ylabel('Samples')
# plt.tight_layout()
# plt.savefig(os.path.join(res_save_dir, f'{layer_name}.png'), dpi=300)
# plt.clf()
# w_sum = w.sum(0)
# w_argsort = w_sum.argsort(descending=True)
# return w[self.debug_sample_i]
# x = self.cur_output
# each_sample_entropy = -(x.softmax(1) * x.log_softmax(1)).sum(1)
# hardest_sample_index = w.sum(1).argmax()
# return w[hardest_sample_index]
# [0.0828, 0.1017, 0.0575, 0.3081, 0.1511, 0.3634, 0.3388, 0.3942, 0.2475, 0.3371, 0.5837, 0.145, 0.4428, 0.2159, 0.4028] 0.27815999999999996
x = self.cur_output
each_sample_entropy = -(x.logits.softmax(1) * x.logits.log_softmax(1)).sum(1)
hardest_sample_index = each_sample_entropy.argmax()
res = w[hardest_sample_index]
return res
# if self.last_final_ws is not None:
# intersection_ratio = (self.last_final_w == res).sum() / (res > 0).sum()
# print('intersection ratio: ', intersection_ratio)
# self.last_final_ws[layer_name] = res
# indices = (-w).sum(0).topk((w[0] == 0).sum())[1]
# boosting = w.max(0)[0]
# boosting[indices] = 0.
# return boosting
# return w[0]
def tent_as_detector(model, x, num_iters=1, lr=1e-4, l1_wd=0., strategy='ours'):
model = deepcopy(model)
before_model = deepcopy(model)
from methods.tent import tent
optimizer = torch.optim.SGD(
model.parameters(), lr=lr, weight_decay=l1_wd)
from models.resnet_cifar.model_manager import ResNetCIFARManager
tented_model = tent.Tent(model, optimizer, ResNetCIFARManager, steps=num_iters)
tent.configure_model(model)
tented_model(x)
filters_sen_info = {}
last_conv_name = None
for (name, m1), m2 in zip(model.named_modules(), before_model.modules()):
if isinstance(m1, nn.Conv2d):
last_conv_name = name
if not isinstance(m1, nn.BatchNorm2d):
continue
with torch.no_grad():
features_weight_diff = ((m1.weight.data - m2.weight.data).abs())
features_bias_diff = ((m1.bias.data - m2.bias.data).abs())
features_diff = features_weight_diff + features_bias_diff
features_diff_order = features_diff.argsort(descending=False)
if strategy == 'ours':
untrained_filters_index = features_diff_order[: int(len(features_diff) * 0.8)]
elif strategy == 'random':
untrained_filters_index = torch.randperm(len(features_diff))[: int(len(features_diff) * 0.8)]
elif strategy == 'inversed_ours':
untrained_filters_index = features_diff_order.flip(0)[: int(len(features_diff) * 0.8)]
elif strategy == 'none':
untrained_filters_index = None
filters_sen_info[name] = dict(untrained_filters_index=untrained_filters_index, conv_name=last_conv_name)
return filters_sen_info
class SGDF(torch.optim.SGD):
@torch.no_grad()
def step(self, model, conv_filters_sen_info, filters_sen_info, closure=None):
"""Performs a single optimization step.
Arguments:
closure (callable, optional): A closure that reevaluates the model
and returns the loss.
"""
loss = None
if closure is not None:
with torch.enable_grad():
loss = closure()
for group in self.param_groups:
weight_decay = group['weight_decay']
momentum = group['momentum']
dampening = group['dampening']
nesterov = group['nesterov']
# assert len([i for i in model.named_parameters()]) == len([j for j in group['params']])
for (name, _), p in zip(model.named_parameters(), group['params']):
if p.grad is None:
continue
layer_name = '.'.join(name.split('.')[0:-1])
if layer_name in filters_sen_info.keys():
untrained_filters_index = filters_sen_info[layer_name]['untrained_filters_index']
elif layer_name in conv_filters_sen_info.keys():
untrained_filters_index = conv_filters_sen_info[layer_name]['untrained_filters_index']
else:
untrained_filters_index = []
d_p = p.grad
if weight_decay != 0:
d_p = d_p.add(p, alpha=weight_decay)
if momentum != 0:
param_state = self.state[p]
if 'momentum_buffer' not in param_state:
buf = param_state['momentum_buffer'] = torch.clone(d_p).detach()
else:
buf = param_state['momentum_buffer']
buf.mul_(momentum).add_(d_p, alpha=1 - dampening)
if nesterov:
d_p = d_p.add(buf, alpha=momentum)
else:
d_p = buf
d_p[untrained_filters_index] = 0.
p.add_(d_p, alpha=-group['lr'])
return loss
if __name__ == '__main__':
set_random_seed(0)
import sys
tag = sys.argv[1]
# alpha = 0.4
alpha = 0.2
# alpha = float(sys.argv[1])
fbs_model_path = sys.argv[1]
cur_time_str = get_cur_time_str()
res_save_dir = f'logs/experiments_trial/CIFAR100C/ours_fbs_more_challenging/{cur_time_str[0:8]}/{cur_time_str[8:]}-{tag}'
os.makedirs(res_save_dir)
import shutil
shutil.copytree(os.path.dirname(__file__),
os.path.join(res_save_dir, 'method'), ignore=shutil.ignore_patterns('*.pt', '*.pth', 'log', '__pycache__'))
logger.info(f'res save dir: {res_save_dir}')
# model = torch.load('logs/experiments_trial/CIFAR100C/ours_dynamic_filters/20220801/152138-0.6_l1wd=1e-8/best_model_0.80.pt')
# model = torch.load('logs/experiments_trial/CIFAR100C/ours_dynamic_filters/20220801/232913-sample_subnetwork/best_model_0.80.pt')
model = torch.load(fbs_model_path)
# model = torch.load('logs/experiments_trial/CIFAR100C/ours_dynamic_filters/20220729/002444-0.4/best_model_0.40.pt')
# import sys
# sys.path.append('/data/xgf/legodnn_and_domain_adaptation')
xgf_model = torch.load('logs/experiments_trial/CIFAR100C/ours_dynamic_filters/20220731/224212-cifar10_svhn_raw/last_model.pt')
# xgf_model = torch.load('/data/xgf/legodnn_and_domain_adaptation/results_scaling_da/image_classification/CIFAR100C_resnet18/onda/offline_l1/s4/20220607/204211/last_model.pt')
# test_dataloader = get_source_dataloader('CIFAR100', 256, 4, 'test', False, False, False)
# test_dataloader = get_target_dataloaders('CIFAR100C', [7], 128, 4, 'test', False, False, False)[0] # snow, xgf 0.3914
# test_dataloaders = get_target_dataloaders('CIFAR100C', list(range(15)), 128, 4, 'test', False, False, False) # defocus_blur, xgf 0.2836
# test_dataloaders = get_target_dataloaders('RotatedCIFAR100', list(range(18)), 128, 4, 'test', False, False, False)
train_dataloaders = [
get_source_dataloader(dataset_name, 128, 4, 'train', True, None, True) for dataset_name in ['SVHN', 'CIFAR10', 'SVHN']
][::-1] * 10
test_dataloaders = [
get_source_dataloader('USPS', 128, 4, 'test', False, False, False),
get_source_dataloader('STL10-wo-monkey', 128, 4, 'test', False, False, False),
get_source_dataloader('MNIST', 128, 4, 'test', False, False, False),
][::-1] * 10
y_offsets = [10, 0, 10][::-1] * 10
domain_names = ['USPS', 'STL10', 'MNIST'][::-1] * 10
# train_dataloader = get_source_dataloader('CIFAR100', 128, 4, 'train', True, None, True)
# acc = ResNetCIFARManager.get_accuracy(model, test_dataloader, 'cuda')
# print(acc)
# baseline_accs = [0.1012, 0.1156, 0.0529, 0.2836, 0.1731, 0.3765, 0.3445, 0.3914, 0.2672, 0.3289, 0.5991, 0.1486, 0.4519, 0.1907, 0.3929]
# accs = []
baseline_before, baseline_after, ours_before, ours_after = [], [], [], []
last_pruned_model, last_pruning_info = None, None
# y_offset = 0
for ti, (test_dataloader, y_offset) in enumerate(zip(test_dataloaders, y_offsets)):
samples, labels = next(iter(test_dataloader))
samples, labels = samples.cuda(), labels.cuda()
labels += y_offset
def bn_cal(_model: nn.Module):
for n, m in _model.named_modules():
if isinstance(m, nn.BatchNorm2d):
m.reset_running_stats()
m.training = True
m.train()
for _ in range(100): # ~one epoch
x, y = next(train_dataloaders[ti])
x = x.cuda()
_model(samples)
def shot(_model: nn.Module, lr=6e-4, num_iters_scale=1, wd=0.):
# print([n for n, p in model.named_parameters()])
_model.requires_grad_(True)
_model.linear.requires_grad_(False)
import torch.optim
optimizer = torch.optim.SGD([p for p in _model.parameters() if p.requires_grad], lr=lr, momentum=0.9, weight_decay=wd)
device = 'cuda'
for _ in range(100 * num_iters_scale):
x = samples
_model.train()
output = ResNetCIFARManager.forward(_model, x)
def Entropy(input_):
entropy = -input_ * torch.log(input_ + 1e-5)
entropy = torch.sum(entropy, dim=1)
return entropy
softmax_out = nn.Softmax(dim=1)(output)
entropy_loss = torch.mean(Entropy(softmax_out))
msoftmax = softmax_out.mean(dim=0)
entropy_loss -= torch.sum(-msoftmax * torch.log(msoftmax + 1e-5))
loss = entropy_loss
optimizer.zero_grad()
loss.backward()
optimizer.step()
def shot_w_part_filter(_model: nn.Module, lr=6e-4, num_iters_scale=1, wd=0.):
# print([n for n, p in model.named_parameters()])
_model.requires_grad_(True)
_model.linear.requires_grad_(False)
import torch.optim
optimizer = SGDF([p for p in _model.parameters() if p.requires_grad], lr=lr, momentum=0.9, weight_decay=wd)
device = 'cuda'
filters_sen_info = tent_as_detector(_model, samples, strategy='ours')
conv_filters_sen_info = {v['conv_name']: v for _, v in filters_sen_info.items()}
for _ in range(100 * num_iters_scale):
x = samples
_model.train()
output = ResNetCIFARManager.forward(_model, x)
def Entropy(input_):
entropy = -input_ * torch.log(input_ + 1e-5)
entropy = torch.sum(entropy, dim=1)
return entropy
softmax_out = nn.Softmax(dim=1)(output)
entropy_loss = torch.mean(Entropy(softmax_out))
msoftmax = softmax_out.mean(dim=0)
entropy_loss -= torch.sum(-msoftmax * torch.log(msoftmax + 1e-5))
loss = entropy_loss
optimizer.zero_grad()
loss.backward()
optimizer.step(_model, conv_filters_sen_info, filters_sen_info)
def tent(_model: nn.Module):
from methods.tent import tent
_model = tent.configure_model(_model)
params, param_names = tent.collect_params(_model)
optimizer = torch.optim.Adam(params, lr=1e-4)
tent_model = tent.Tent(_model, optimizer, ResNetCIFARManager, steps=1)
tent.configure_model(_model)
tent_model(samples)
def tent_configure_bn(_model):
"""Configure model for use with tent."""
# train mode, because tent optimizes the model to minimize entropy
# _model.train()
# # disable grad, to (re-)enable only what tent updates
# _model.requires_grad_(False)
# configure norm for tent updates: enable grad + force batch statisics
for m in _model.modules():
if isinstance(m, nn.BatchNorm2d):
m.requires_grad_(True)
# force use of batch stats in train and eval modes
m.track_running_stats = False
m.running_mean = None
m.running_var = None
# m.track_running_stats = True
# m.momentum = 1.0
# # FIXME
# from methods.ours_dynamic_filters.extract_submodel import FeatureBoosting
# # if isinstance(m, FeatureBoosting):
# if m.__class__.__name__ == 'FeatureBoosting':
# m.requires_grad_(True)
return model
def sl(_model: nn.Module, lr=6e-4, num_iters_scale=1, wd=0.):
_model.requires_grad_(True)
_model.linear.requires_grad_(False)
import torch.optim
optimizer = torch.optim.SGD([p for p in _model.parameters() if p.requires_grad], lr=lr, momentum=0.9, weight_decay=wd)
device = 'cuda'
for _ in range(100 * num_iters_scale):
x = samples
_model.train()
loss = ResNetCIFARManager.forward_to_gen_loss(_model, x, labels)
optimizer.zero_grad()
loss.backward()
optimizer.step()
model_extractor = DAFBSSubModelExtractor()
model1 = model_extractor.extract_submodel_via_a_sample(model,samples[0])
pruned_model, pruning_info = model_extractor.extract_submodel_via_samples_and_last_submodel(model, samples, None, None)
# print(pruned_model)
# print(get_model_size(pruned_model, True))
# bn_cal(pruned_model)
acc = ResNetCIFARManager.get_accuracy(pruned_model, test_dataloader, 'cuda', y_offset)
print(acc)
ours_before += [acc]
# tent(pruned_model)
# bn_cal(pruned_model)
shot_w_part_filter(pruned_model, 6e-4, 1, 1e-3)
# sl(pruned_model)
acc = ResNetCIFARManager.get_accuracy(pruned_model, test_dataloader, 'cuda', y_offset)
print(acc)
ours_after += [acc]
last_pruned_model, last_pruning_info = deepcopy(pruned_model), deepcopy(pruning_info)
model_extractor.absorb_sub_model(model, pruned_model, pruning_info, alpha)
# xgf_model = torch.load('/data/xgf/legodnn_and_domain_adaptation/results_scaling_da/image_classification/CIFAR100C_resnet18/onda/offline_l1/s8/20220607/212448/last_model.pt')
# xgf_model = torch.load('/data/xgf/legodnn_and_domain_adaptation/results_scaling_da/image_classification/CIFAR100C_resnet18/onda/offline_l1/s4/20220607/204211/last_model.pt')
# print(xgf_model)
# acc = ResNetCIFARManager.get_accuracy(xgf_model, test_dataloader, 'cuda', y_offset)
# print(acc)
# baseline_before += [acc]
# # tent(xgf_model)
# shot(xgf_model)
# # sl(xgf_model)
# acc = ResNetCIFARManager.get_accuracy(xgf_model, test_dataloader, 'cuda', y_offset)
# print(acc)
# baseline_after += [acc]
# print()
# diff = acc - baseline_accs[ti]
# print(f'domain {ti}, model size {get_model_size(pruned_model, True):.3f}MB, diff: {diff:.4f}')
# print(accs, sum(accs) / len(accs))
import matplotlib.pyplot as plt
from visualize.util import *
set_figure_settings(3)
def avg(arr):
return sum(arr) / len(arr)
# plt.plot(list(range(len(test_dataloaders))), baseline_before, lw=2, linestyle='--', color=BLUE, label=f'L1 before DA ({avg(baseline_before):.4f})')
# plt.plot(list(range(len(test_dataloaders))), baseline_after, lw=2, linestyle='-', color=BLUE, label=f'L1 after DA ({avg(baseline_after):.4f})')
plt.plot(list(range(len(test_dataloaders))), ours_before, lw=2, linestyle='--', color=RED, label=f'ours before DA ({avg(ours_before):.4f})')
plt.plot(list(range(len(test_dataloaders))), ours_after, lw=2, linestyle='-', color=RED, label=f'ours after DA ({avg(ours_after):.4f})')
plt.xlabel('domains')
plt.ylabel('accuracy')
plt.xticks(list(range(len(domain_names))), domain_names, rotation=90)
plt.legend(loc=2, bbox_to_anchor=(1.05, 1.0), fontsize=16)
plt.tight_layout()
plt.savefig(os.path.join(res_save_dir, 'main.png'), dpi=300)
plt.clf()
torch.save((baseline_before, baseline_after, ours_before, ours_after), os.path.join(res_save_dir, 'main.png.data'))
# with open('./tmp.csv', 'a') as f:
# f.write(f'{alpha:.2f},{avg(baseline_after):.4f},{avg(ours_after):.4f}')
# std: logs/experiments_trial/CIFAR100C/ours_dynamic_filters/20220730/161404-submodel/main.png
# accs = []
# for i in tqdm.tqdm(range(100)):
# model_extractor.debug_sample_i = i
# pruned_model = model_extractor.extract_submodel_via_samples(model, samples)
# acc = ResNetCIFARManager.get_accuracy(pruned_model, test_dataloader, 'cuda')
# accs += [acc]
# import matplotlib.pyplot as plt
# plt.plot(list(range(100)), accs)
# plt.savefig('./tmp.png', dpi=300)
# plt.clf()
# ------------------------------
# perf test
# sample, _ = next(iter(test_dataloader))
# sample = sample[0: 1].cuda()
# pruned_model = FBSSubModelExtractor().extract_submodel_via_a_sample(model, sample)
# bs = 1
# def perf_test(model, batch_size, device):
# model = model.to(device)
# optimizer = torch.optim.SGD(model.parameters(), lr=1e-3)
# # warmup
# for _ in range(100):
# rand_input = torch.rand((batch_size, 3, 32, 32)).to(device)
# o = model(rand_input)
# forward_latency = 0.
# backward_latency = 0.
# for _ in range(100):
# rand_input = torch.rand((batch_size, 3, 32, 32)).to(device)
# optimizer.zero_grad()
# s, e = torch.cuda.Event(enable_timing=True), torch.cuda.Event(enable_timing=True)
# s.record()
# o = model(rand_input)
# e.record()
# torch.cuda.synchronize()
# forward_latency += s.elapsed_time(e) / 1000.
# loss = ((o - 1) ** 2).sum()
# s, e = torch.cuda.Event(enable_timing=True), torch.cuda.Event(enable_timing=True)
# s.record()
# loss.backward()
# optimizer.step()
# e.record()
# torch.cuda.synchronize()
# backward_latency += s.elapsed_time(e) / 1000.
# forward_latency /= 100
# backward_latency /= 100
# print(forward_latency, backward_latency)
# for bs in [1, 128]:
# for device in ['cuda', 'cpu']:
# for m in [model, pruned_model]:
# print(bs, device)
# perf_test(m, bs, device)