EdgeTA / data /build /scenario.py
LINC-BIT's picture
Upload 1912 files
b84549f verified
raw
history blame
22.5 kB
import enum
from functools import reduce
from typing import Dict, List, Tuple
import numpy as np
import copy
from utils.common.log import logger
from ..datasets.ab_dataset import ABDataset
from ..dataloader import FastDataLoader, InfiniteDataLoader, build_dataloader
from data import get_dataset
class DatasetMetaInfo:
def __init__(self, name,
known_classes_name_idx_map, unknown_class_idx):
assert unknown_class_idx not in known_classes_name_idx_map.keys()
self.name = name
self.unknown_class_idx = unknown_class_idx
self.known_classes_name_idx_map = known_classes_name_idx_map
@property
def num_classes(self):
return len(self.known_classes_idx) + 1
class MergedDataset:
def __init__(self, datasets: List[ABDataset]):
self.datasets = datasets
self.datasets_len = [len(i) for i in self.datasets]
logger.info(f'create MergedDataset: len of datasets {self.datasets_len}')
self.datasets_cum_len = np.cumsum(self.datasets_len)
def __getitem__(self, idx):
for i, cum_len in enumerate(self.datasets_cum_len):
if idx < cum_len:
return self.datasets[i][idx - sum(self.datasets_len[0: i])]
def __len__(self):
return sum(self.datasets_len)
class IndexReturnedDataset:
def __init__(self, dataset: ABDataset):
self.dataset = dataset
def __getitem__(self, idx):
res = self.dataset[idx]
if isinstance(res, (tuple, list)):
return (*res, idx)
else:
return res, idx
def __len__(self):
return len(self.dataset)
# class Scenario:
# def __init__(self, config,
# source_datasets_meta_info: Dict[str, DatasetMetaInfo], target_datasets_meta_info: Dict[str, DatasetMetaInfo],
# target_source_map: Dict[str, Dict[str, str]],
# target_domains_order: List[str],
# source_datasets: Dict[str, Dict[str, ABDataset]], target_datasets: Dict[str, Dict[str, ABDataset]]):
# self.__config = config
# self.__source_datasets_meta_info = source_datasets_meta_info
# self.__target_datasets_meta_info = target_datasets_meta_info
# self.__target_source_map = target_source_map
# self.__target_domains_order = target_domains_order
# self.__source_datasets = source_datasets
# self.__target_datasets = target_datasets
# # 1. basic
# def get_config(self):
# return copy.deepcopy(self.__config)
# def get_task_type(self):
# return list(self.__source_datasets.values())[0]['train'].task_type
# def get_num_classes(self):
# known_classes_idx = []
# unknown_classes_idx = []
# for v in self.__source_datasets_meta_info.values():
# known_classes_idx += list(v.known_classes_name_idx_map.values())
# unknown_classes_idx += [v.unknown_class_idx]
# for v in self.__target_datasets_meta_info.values():
# known_classes_idx += list(v.known_classes_name_idx_map.values())
# unknown_classes_idx += [v.unknown_class_idx]
# unknown_classes_idx = [i for i in unknown_classes_idx if i is not None]
# # print(known_classes_idx, unknown_classes_idx)
# res = len(set(known_classes_idx)), len(set(unknown_classes_idx)), len(set(known_classes_idx + unknown_classes_idx))
# # print(res)
# assert res[0] + res[1] == res[2]
# return res
# def build_dataloader(self, dataset: ABDataset, batch_size: int, num_workers: int, infinite: bool, shuffle_when_finite: bool):
# if infinite:
# dataloader = InfiniteDataLoader(
# dataset, None, batch_size, num_workers=num_workers)
# else:
# dataloader = FastDataLoader(
# dataset, batch_size, num_workers, shuffle=shuffle_when_finite)
# return dataloader
# def build_sub_dataset(self, dataset: ABDataset, indexes: List[int]):
# from ..data.datasets.dataset_split import _SplitDataset
# dataset.dataset = _SplitDataset(dataset.dataset, indexes)
# return dataset
# def build_index_returned_dataset(self, dataset: ABDataset):
# return IndexReturnedDataset(dataset)
# # 2. source
# def get_source_datasets_meta_info(self):
# return self.__source_datasets_meta_info
# def get_source_datasets_name(self):
# return list(self.__source_datasets.keys())
# def get_merged_source_dataset(self, split):
# source_train_datasets = {n: d[split] for n, d in self.__source_datasets.items()}
# return MergedDataset(list(source_train_datasets.values()))
# def get_source_datasets(self, split):
# source_train_datasets = {n: d[split] for n, d in self.__source_datasets.items()}
# return source_train_datasets
# # 3. target **domain**
# # (do we need such API `get_ith_target_domain()`?)
# def get_target_domains_meta_info(self):
# return self.__source_datasets_meta_info
# def get_target_domains_order(self):
# return self.__target_domains_order
# def get_corr_source_datasets_name_of_target_domain(self, target_domain_name):
# return self.__target_source_map[target_domain_name]
# def get_limited_target_train_dataset(self):
# if len(self.__target_domains_order) > 1:
# raise RuntimeError('this API is only for pass-in scenario in user-defined online DA algorithm')
# return list(self.__target_datasets.values())[0]['train']
# def get_target_domains_iterator(self, split):
# for target_domain_index, target_domain_name in enumerate(self.__target_domains_order):
# target_dataset = self.__target_datasets[target_domain_name]
# target_domain_meta_info = self.__target_datasets_meta_info[target_domain_name]
# yield target_domain_index, target_domain_name, target_dataset[split], target_domain_meta_info
# # 4. permission management
# def get_sub_scenario(self, source_datasets_name, source_splits, target_domains_order, target_splits):
# def get_split(dataset, splits):
# res = {}
# for s, d in dataset.items():
# if s in splits:
# res[s] = d
# return res
# return Scenario(
# config=self.__config,
# source_datasets_meta_info={k: v for k, v in self.__source_datasets_meta_info.items() if k in source_datasets_name},
# target_datasets_meta_info={k: v for k, v in self.__target_datasets_meta_info.items() if k in target_domains_order},
# target_source_map={k: v for k, v in self.__target_source_map.items() if k in target_domains_order},
# target_domains_order=target_domains_order,
# source_datasets={k: get_split(v, source_splits) for k, v in self.__source_datasets.items() if k in source_datasets_name},
# target_datasets={k: get_split(v, target_splits) for k, v in self.__target_datasets.items() if k in target_domains_order}
# )
# def get_only_source_sub_scenario_for_exp_tracker(self):
# return self.get_sub_scenario(self.get_source_datasets_name(), ['train', 'val', 'test'], [], [])
# def get_only_source_sub_scenario_for_alg(self):
# return self.get_sub_scenario(self.get_source_datasets_name(), ['train'], [], [])
# def get_one_da_sub_scenario_for_alg(self, target_domain_name):
# return self.get_sub_scenario(self.get_corr_source_datasets_name_of_target_domain(target_domain_name),
# ['train', 'val'], [target_domain_name], ['train'])
# class Scenario:
# def __init__(self, config,
# offline_source_datasets_meta_info: Dict[str, DatasetMetaInfo],
# offline_source_datasets: Dict[str, ABDataset],
# online_datasets_meta_info: List[Tuple[Dict[str, DatasetMetaInfo], DatasetMetaInfo]],
# online_datasets: Dict[str, ABDataset],
# target_domains_order: List[str],
# target_source_map: Dict[str, Dict[str, str]],
# num_classes: int):
# self.config = config
# self.offline_source_datasets_meta_info = offline_source_datasets_meta_info
# self.offline_source_datasets = offline_source_datasets
# self.online_datasets_meta_info = online_datasets_meta_info
# self.online_datasets = online_datasets
# self.target_domains_order = target_domains_order
# self.target_source_map = target_source_map
# self.num_classes = num_classes
# def get_offline_source_datasets(self, split):
# return {n: d[split] for n, d in self.offline_source_datasets.items()}
# def get_offline_source_merged_dataset(self, split):
# return MergedDataset([d[split] for d in self.offline_source_datasets.values()])
# def get_online_current_corresponding_source_datasets(self, domain_index, split):
# cur_target_domain_name = self.target_domains_order[domain_index]
# cur_source_datasets_name = list(self.target_source_map[cur_target_domain_name].keys())
# cur_source_datasets = {n: self.online_datasets[n + '|' + cur_target_domain_name][split] for n in cur_source_datasets_name}
# return cur_source_datasets
# def get_online_current_corresponding_merged_source_dataset(self, domain_index, split):
# cur_target_domain_name = self.target_domains_order[domain_index]
# cur_source_datasets_name = list(self.target_source_map[cur_target_domain_name].keys())
# cur_source_datasets = {n: self.online_datasets[n + '|' + cur_target_domain_name][split] for n in cur_source_datasets_name}
# return MergedDataset([d for d in cur_source_datasets.values()])
# def get_online_current_target_dataset(self, domain_index, split):
# cur_target_domain_name = self.target_domains_order[domain_index]
# return self.online_datasets[cur_target_domain_name][split]
# def build_dataloader(self, dataset: ABDataset, batch_size: int, num_workers: int,
# infinite: bool, shuffle_when_finite: bool, to_iterator: bool):
# if infinite:
# dataloader = InfiniteDataLoader(
# dataset, None, batch_size, num_workers=num_workers)
# else:
# dataloader = FastDataLoader(
# dataset, batch_size, num_workers, shuffle=shuffle_when_finite)
# if to_iterator:
# dataloader = iter(dataloader)
# return dataloader
# def build_sub_dataset(self, dataset: ABDataset, indexes: List[int]):
# from data.datasets.dataset_split import _SplitDataset
# dataset.dataset = _SplitDataset(dataset.dataset, indexes)
# return dataset
# def build_index_returned_dataset(self, dataset: ABDataset):
# return IndexReturnedDataset(dataset)
# def get_config(self):
# return copy.deepcopy(self.config)
# def get_task_type(self):
# return list(self.online_datasets.values())[0]['train'].task_type
# def get_num_classes(self):
# return self.num_classes
class Scenario:
def __init__(self, config, all_datasets_ignore_classes_map, all_datasets_idx_map, target_domains_order, target_source_map,
all_datasets_e2e_class_to_idx_map,
num_classes):
self.config = config
self.all_datasets_ignore_classes_map = all_datasets_ignore_classes_map
self.all_datasets_idx_map = all_datasets_idx_map
self.target_domains_order = target_domains_order
self.target_source_map = target_source_map
self.all_datasets_e2e_class_to_idx_map = all_datasets_e2e_class_to_idx_map
self.num_classes = num_classes
self.cur_domain_index = 0
logger.info(f'[scenario build] # classes: {num_classes}')
logger.debug(f'[scenario build] idx map: {all_datasets_idx_map}')
def to_json(self):
return dict(
config=self.config, all_datasets_ignore_classes_map=self.all_datasets_ignore_classes_map,
all_datasets_idx_map=self.all_datasets_idx_map, target_domains_order=self.target_domains_order,
target_source_map=self.target_source_map,
all_datasets_e2e_class_to_idx_map=self.all_datasets_e2e_class_to_idx_map,
num_classes=self.num_classes
)
def __str__(self):
return f'Scenario({self.to_json()})'
def get_offline_datasets(self, transform=None):
# make source datasets which contains all unioned classes
res_offline_train_source_datasets_map = {}
from .. import get_dataset
data_dirs = self.config['data_dirs']
source_datasets_name = self.config['source_datasets_name']
res_source_datasets_map = {d: {split: get_dataset(d.split('|')[0], data_dirs[d.split('|')[0]], split,
transform,
self.all_datasets_ignore_classes_map[d], self.all_datasets_idx_map[d])
for split in ['train', 'val', 'test']}
for d in self.all_datasets_ignore_classes_map.keys() if d.split('|')[0] in source_datasets_name}
for source_dataset_name in self.config['source_datasets_name']:
source_datasets = [v for k, v in res_source_datasets_map.items() if source_dataset_name in k]
# how to merge idx map?
# 35 79 97
idx_maps = [d['train'].idx_map for d in source_datasets]
ignore_classes_list = [d['train'].ignore_classes for d in source_datasets]
union_idx_map = {}
for idx_map in idx_maps:
for k, v in idx_map.items():
if k not in union_idx_map:
union_idx_map[k] = v
else:
assert union_idx_map[k] == v
union_ignore_classes = reduce(lambda res, cur: res & set(cur), ignore_classes_list, set(ignore_classes_list[0]))
assert len(union_ignore_classes) + len(union_idx_map) == len(source_datasets[0]['train'].raw_classes)
logger.info(f'[scenario build] {source_dataset_name} has {len(union_idx_map)} classes in offline training')
d = source_dataset_name
res_offline_train_source_datasets_map[d] = {split: get_dataset(d, data_dirs[d], split,
transform,
union_ignore_classes, union_idx_map)
for split in ['train', 'val', 'test']}
return res_offline_train_source_datasets_map
def get_offline_datasets_args(self):
# make source datasets which contains all unioned classes
res_offline_train_source_datasets_map = {}
from .. import get_dataset
data_dirs = self.config['data_dirs']
source_datasets_name = self.config['source_datasets_name']
res_source_datasets_map = {d: {split: get_dataset(d.split('|')[0], data_dirs[d.split('|')[0]], split,
None,
self.all_datasets_ignore_classes_map[d], self.all_datasets_idx_map[d])
for split in ['train', 'val', 'test']}
for d in self.all_datasets_ignore_classes_map.keys() if d.split('|')[0] in source_datasets_name}
for source_dataset_name in self.config['source_datasets_name']:
source_datasets = [v for k, v in res_source_datasets_map.items() if source_dataset_name in k]
# how to merge idx map?
# 35 79 97
idx_maps = [d['train'].idx_map for d in source_datasets]
ignore_classes_list = [d['train'].ignore_classes for d in source_datasets]
union_idx_map = {}
for idx_map in idx_maps:
for k, v in idx_map.items():
if k not in union_idx_map:
union_idx_map[k] = v
else:
assert union_idx_map[k] == v
union_ignore_classes = reduce(lambda res, cur: res & set(cur), ignore_classes_list, set(ignore_classes_list[0]))
assert len(union_ignore_classes) + len(union_idx_map) == len(source_datasets[0]['train'].raw_classes)
logger.info(f'[scenario build] {source_dataset_name} has {len(union_idx_map)} classes in offline training')
d = source_dataset_name
res_offline_train_source_datasets_map[d] = {split: dict(d, data_dirs[d], split,
None,
union_ignore_classes, union_idx_map)
for split in ['train', 'val', 'test']}
return res_offline_train_source_datasets_map
# for d in source_datasets_name:
# source_dataset_with_max_num_classes = None
# for ed_name, ed in res_source_datasets_map.items():
# if not ed_name.startswith(d):
# continue
# if source_dataset_with_max_num_classes is None:
# source_dataset_with_max_num_classes = ed
# res_offline_train_source_datasets_map_names[d] = ed_name
# if len(ed['train'].ignore_classes) < len(source_dataset_with_max_num_classes['train'].ignore_classes):
# source_dataset_with_max_num_classes = ed
# res_offline_train_source_datasets_map_names[d] = ed_name
# res_offline_train_source_datasets_map[d] = source_dataset_with_max_num_classes
# return res_offline_train_source_datasets_map
def get_online_ith_domain_datasets_args_for_inference(self, domain_index):
target_dataset_name = self.target_domains_order[domain_index]
# dataset_name: Any, root_dir: Any, split: Any, transform: Any | None = None, ignore_classes: Any = [], idx_map: Any | None = None
if 'MM-CityscapesDet' in self.target_domains_order or 'CityscapesDet' in self.target_domains_order or 'BaiduPersonDet' in self.target_domains_order:
logger.info(f'use val split for inference test (only Det workload)')
split = 'test'
else:
split = 'train'
return dict(dataset_name=target_dataset_name,
root_dir=self.config['data_dirs'][target_dataset_name],
split=split,
transform=None,
ignore_classes=self.all_datasets_ignore_classes_map[target_dataset_name],
idx_map=self.all_datasets_idx_map[target_dataset_name])
def get_online_ith_domain_datasets_args_for_training(self, domain_index):
target_dataset_name = self.target_domains_order[domain_index]
source_datasets_name = list(self.target_source_map[target_dataset_name].keys())
res = {}
# dataset_name: Any, root_dir: Any, split: Any, transform: Any | None = None, ignore_classes: Any = [], idx_map: Any | None = None
res[target_dataset_name] = {split: dict(dataset_name=target_dataset_name,
root_dir=self.config['data_dirs'][target_dataset_name],
split=split,
transform=None,
ignore_classes=self.all_datasets_ignore_classes_map[target_dataset_name],
idx_map=self.all_datasets_idx_map[target_dataset_name]) for split in ['train', 'val']}
for d in source_datasets_name:
res[d] = {split: dict(dataset_name=d,
root_dir=self.config['data_dirs'][d],
split=split,
transform=None,
ignore_classes=self.all_datasets_ignore_classes_map[d + '|' + target_dataset_name],
idx_map=self.all_datasets_idx_map[d + '|' + target_dataset_name]) for split in ['train', 'val']}
return res
def get_online_cur_domain_datasets_args_for_inference(self):
return self.get_online_ith_domain_datasets_args_for_inference(self.cur_domain_index)
def get_online_cur_domain_datasets_args_for_training(self):
return self.get_online_ith_domain_datasets_args_for_training(self.cur_domain_index)
def get_online_cur_domain_datasets_for_training(self, transform=None):
res = {}
datasets_args = self.get_online_ith_domain_datasets_args_for_training(self.cur_domain_index)
for dataset_name, dataset_args in datasets_args.items():
res[dataset_name] = {}
for split, args in dataset_args.items():
if transform is not None:
args['transform'] = transform
dataset = get_dataset(**args)
res[dataset_name][split] = dataset
return res
def get_online_cur_domain_datasets_for_inference(self, transform=None):
datasets_args = self.get_online_ith_domain_datasets_args_for_inference(self.cur_domain_index)
if transform is not None:
datasets_args['transform'] = transform
return get_dataset(**datasets_args)
def get_online_cur_domain_samples_for_training(self, num_samples, transform=None, collate_fn=None):
dataset = self.get_online_cur_domain_datasets_for_training(transform=transform)
dataset = dataset[self.target_domains_order[self.cur_domain_index]]['train']
return next(iter(build_dataloader(dataset, num_samples, 0, True, None, collate_fn=collate_fn)))[0]
def next_domain(self):
self.cur_domain_index += 1