LINC-BIT's picture
Upload 1912 files
b84549f verified
raw
history blame
1.73 kB
from ..data_aug import imagenet_like_image_train_aug, imagenet_like_image_test_aug
from ..ab_dataset import ABDataset
from ..dataset_split import train_val_split, train_val_test_split
from torchvision.datasets import ImageFolder
import os
from typing import Dict, List, Optional
from torchvision.transforms import Compose
from ..registery import dataset_register
# with open(os.path.join(os.path.dirname(__file__), 'fruits360_classes.txt'), 'r') as f:
# classes = [line.split(':')[0].strip('"') for line in f.readlines()]
# assert len(classes) == 131
@dataset_register(
name='BaiduPersonCls',
classes=['seg_person'],
task_type='Image Classification',
object_type='Person',
class_aliases=[],
shift_type=None
)
class BaiduPersonCls(ABDataset):
def create_dataset(self, root_dir: str, split: str, transform: Optional[Compose],
classes: List[str], ignore_classes: List[str], idx_map: Optional[Dict[int, int]]):
if transform is None:
transform = imagenet_like_image_train_aug() if split == 'train' else imagenet_like_image_test_aug()
self.transform = transform
#root_dir = os.path.join(root_dir, 'train' if split != 'test' else 'val')
dataset = ImageFolder(root_dir, transform=transform)
if len(ignore_classes) > 0:
ignore_classes_idx = [classes.index(c) for c in ignore_classes]
dataset.samples = [s for s in dataset.samples if s[1] not in ignore_classes_idx]
if idx_map is not None:
dataset.samples = [(s[0], idx_map[s[1]]) if s[1] in idx_map.keys() else s for s in dataset.samples]
dataset = train_val_test_split(dataset, split)
return dataset