File size: 11,764 Bytes
b84549f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 |
import timm
from timm.models._factory import load_checkpoint
import torch
import os
from torch import nn
from torch.jit import Final
from einops import rearrange, repeat
from einops.layers.torch import Rearrange
from utils.dl.common.model import get_model_device, set_module
import torch.nn.functional as F
from utils.common.log import logger
# class SoftmaxIgnoringZero(nn.Module):
# def __init__(self):
# super(SoftmaxIgnoringZero, self).__init__()
# def forward(self, x: torch.Tensor):
# # non_zero_x_indexes = x.nonzero(as_tuple=True)[0]
# # non_zero_x = x[non_zero_x_indexes]
# # non_zero_x_softmax = F.softmax(non_zero_x, self.dim, _stacklevel=5)
# # res = torch.zeros_like(x)
# # original: e^i / \sum_i e^i
# # ignoring zero: e^i
# # print(x)
# non_zero_mask = x != 0
# if non_zero_mask.sum() == x.numel():
# return F.softmax(x, -1)
# t = non_zero_mask.sum(-1)
# assert t.view(-1).unique().size(0) == 1, f'{t.view(-1).unique()}, {x.size()}' # all vectors in the softmaxed dim has the same number of 0
# # assert t.view(-1).unique().size(0) <= 2, f'{t.view(-1).unique()}, {x.size()}' # all vectors in the softmaxed dim has the same number of 0 or has no 0
# non_zero_x = torch.masked_select(x, non_zero_mask)
# non_zero_x = non_zero_x.view(*(list(x.size())[0: -1] + [t.view(-1)[0].item()]))
# # print(non_zero_x)
# non_zero_x_softmax = F.softmax(non_zero_x, -1)
# a = x.nonzero(as_tuple=True)[-1]
# a = a.view(*non_zero_x_softmax.size())
# x = x.scatter(x.dim() - 1, a, non_zero_x_softmax)
# return x
class SoftmaxIgnoringZero(nn.Module):
def __init__(self):
super(SoftmaxIgnoringZero, self).__init__()
def f(self, x):
# return x / (x + 1e-8)
return 1.
def forward(self, x: torch.Tensor):
res = F.softmax(x, -1)
return res * self.f(x)
class PrunableAttention(nn.Module):
"""
https://github.com/lucidrains/vit-pytorch
"""
def __init__(self, dim, heads = 8, dim_head = 64, dropout = 0., qkv_bias = False):
super().__init__()
self.inner_dim = inner_dim = dim_head * heads
project_out = not (heads == 1 and dim_head == dim)
self.num_heads = heads
self.scale = dim_head ** -0.5
self.attend = nn.Softmax(dim = -1)
self.dropout = nn.Dropout(dropout)
self.qkv = nn.Linear(dim, inner_dim * 3, bias = qkv_bias)
# self.proj = nn.Sequential(
# nn.Linear(inner_dim, dim),
# nn.Dropout(dropout)
# ) if project_out else nn.Identity()
self.proj = nn.Linear(inner_dim, dim) if project_out else nn.Identity()
self.proj_dropout = nn.Dropout(dropout)
def forward(self, x):
# qkv = self.qkv(x).chunk(3, dim = -1)
raw_qkv = self.qkv(x)
self.inner_dim = (raw_qkv.size(-1) - self.proj.in_features) // 2
qkv = raw_qkv[:, :, 0: self.inner_dim], raw_qkv[:, :, self.inner_dim: self.inner_dim * 2], raw_qkv[:, :, self.inner_dim * 2:]
# print('v', qkv[0].size(), qkv[0].sum((0, 1))[0: 10], qkv[0].sum((0, 1)).nonzero(as_tuple=True)[0].size())
# raw_v = qkv[2]
# print('after_fbs_q, after_fbs_k', qkv[0].sum((0, 1))[0: 10], qkv[0].sum((0, 1)).nonzero(as_tuple=True)[0].size(),
# qkv[1].sum((0, 1))[0: 10], qkv[1].sum((0, 1)).nonzero(as_tuple=True)[0].size(),)
# print('after_fbs_v', raw_v.size(), raw_v.sum((0, 1))[0: 10], raw_v.sum((0, 1)).nonzero(as_tuple=True)[0].size())
# print('q, before rearrage', qkv[0].size())
q, k, v = qkv
# print('raw qkv size', q.size(), k.size(), v.size())
# exit()
q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> b h n d', h = self.num_heads), qkv)
# print('raw qkv size', q.size(), k.size(), v.size())
dots = torch.matmul(q, k.transpose(-1, -2)) * self.scale
# print('q, k, dots, after rearrage', q.size(), k.transpose(-1, -2).size(), dots.size())
attn = self.attend(dots)
# attn = dots
attn = self.dropout(attn)
# print(attn)
# print('attn', attn.size(), attn.sum((0, 1))[0: 10], attn.sum((0, 1)).nonzero(as_tuple=True)[0].size())
# print('attn', attn.size(), attn.sum((0, 1))[0: 10], attn.sum((0, 1)).nonzero(as_tuple=True)[0].size())
# print('v2', v.size())
out = torch.matmul(attn, v)
# print('out1', out.size())
# NOTE: just for trial debug
# out = v
# print('out before rerange', out.size())
# print(v.size(), v)
# exit()
out = rearrange(out, 'b h n d -> b n (h d)')
# print('out', out.size(), out.sum((0, 1))[0: 10], out.sum((0, 1)).nonzero(as_tuple=True)[0].size())
# exit()
res = self.proj_dropout(self.proj(out))
# res = self.proj_dropout(
# F.linear(self.proj.weight.T, out.T, self.proj.bias)
# )
# print(self.proj, self.proj_dropout)
# print('res', res.size(), res.sum((0, 1))[0: 10], res.sum((0, 1)).nonzero(as_tuple=True)[0].size())
return res
def make_attention_prunable(vit):
for block in vit.blocks:
attn = block.attn
assert attn.attn_drop.p == attn.proj_drop.p
prunable_attn = PrunableAttention(
dim=attn.head_dim * attn.num_heads,
heads=attn.num_heads,
dim_head=attn.head_dim,
dropout=attn.attn_drop.p,
qkv_bias=attn.qkv.bias is not None
)
prunable_attn.qkv.weight.copy_(attn.qkv.weight)
if attn.qkv.bias is not None:
prunable_attn.qkv.bias.copy_(attn.qkv.bias)
prunable_attn.proj.weight.copy_(attn.proj.weight)
prunable_attn.proj.bias.copy_(attn.proj.bias)
set_module(block, 'attn', prunable_attn)
@torch.no_grad()
def vit_l_16(pretrained=True, num_classes=None) -> nn.Module:
# https://huggingface.co/timm/vit_large_patch16_224.augreg_in21k_ft_in1k
res = timm.create_model('vit_large_patch16_224.augreg_in21k_ft_in1k',
num_classes=num_classes)
if pretrained:
checkpoint_path = os.path.join(os.path.dirname(__file__),
'weights/vit_large_patch16_224.augreg_in21k_ft_in1k.bin')
def filter_fn(state_dict, _):
if num_classes is None: # use fine-tuned in1k fc head
return state_dict
else: # use a new linear
del state_dict['head.weight']
del state_dict['head.bias']
return state_dict
load_checkpoint(res, checkpoint_path, strict=False, filter_fn=filter_fn)
res.eval()
input_sample = torch.rand(2, 3, 224, 224)
o1 = res(input_sample)
make_attention_prunable(res)
res.eval()
o2 = res(input_sample)
assert ((o1 - o2) ** 2).sum() < 1e-5
return res
from timm.models.vision_transformer import VisionTransformer
@torch.no_grad()
def vit_b_16(pretrained=True, num_classes=None) -> VisionTransformer:
# https://huggingface.co/timm/vit_base_patch16_224.augreg_in21k_ft_in1k
res = timm.create_model('vit_base_patch16_224.augreg_in21k_ft_in1k',
num_classes=num_classes)
if pretrained:
checkpoint_path = os.path.join(os.path.dirname(__file__),
'weights/vit_base_patch16_224.augreg_in21k_ft_in1k.bin')
def filter_fn(state_dict, _):
if num_classes is None: # use fine-tuned in1k fc head
return state_dict
else: # use a new linear
del state_dict['head.weight']
del state_dict['head.bias']
return state_dict
load_checkpoint(res, checkpoint_path, strict=False, filter_fn=filter_fn)
res.eval()
input_sample = torch.rand(2, 3, 224, 224)
o1 = res(input_sample)
logger.info(f'make attention prunable')
make_attention_prunable(res)
# logger.info(f'make softmax prunable')
# make_softmax_prunable(res)
res.eval()
o2 = res(input_sample)
# print(((o1 - o2) ** 2).sum())
assert ((o1 - o2) ** 2).sum() < 1e-5
return res
def make_softmax_prunable(model):
model.eval()
input_sample = torch.rand(2, 3, 224, 224).to(get_model_device(model))
o1 = model(input_sample)
for name, module in model.named_modules():
if isinstance(module, nn.Softmax):
set_module(model, name, SoftmaxIgnoringZero())
logger.info(f'make softmax {name} prunable')
model.eval()
o2 = model(input_sample)
assert ((o1 - o2) ** 2).sum() < 1e-5
return model
if __name__ == '__main__':
model = vit_l_16()
model(torch.rand((1, 3, 224, 224)))
# from utils.dl.common.data_loader import ImageNetDataLoader
# _, test_loader = ImageNetDataLoader('/data/zql/datasets/imagenet2012/train', '/data/zql/datasets/imagenet2012/val', 512, 8)
# import torch
# import tqdm
# import torch.nn.functional as F
# def get_accuracy(model, dataloader=test_loader, device='cuda'):
# acc = 0
# sample_num = 0
# model.eval()
# model = model.to(device)
# with torch.no_grad():
# pbar = tqdm.tqdm(enumerate(dataloader), total=len(dataloader), dynamic_ncols=True, leave=False)
# for batch_index, (x, y) in pbar:
# x, y = x.to(device), y.to(device)
# output = model(x)
# pred = F.softmax(output, dim=1).argmax(dim=1)
# correct = torch.eq(pred, y).sum().item()
# acc += correct
# sample_num += len(y)
# pbar.set_description(f'cur_batch_total: {len(y)}, cur_batch_correct: {correct}, '
# f'cur_batch_acc: {(correct / len(y)):.4f}')
# acc /= sample_num
# return acc
# model = model.cuda()
# print(f'vit_l_16 im1k acc: {get_accuracy(model, test_loader, "cuda")}')
# softmax = SoftmaxIgnoringZero()
# x = torch.tensor([[[1, 0, 3], [2, 2, 0]]] * 2).float()
# print(softmax(x))
# model = vit_b_16(True)
# print(get_accuracy(model))
# for name, module in model.named_modules():
# if isinstance(module, nn.Softmax):
# set_module(model, name, SoftmaxIgnoringZero())
# print(f'{name}')
# # print(model)
# print(get_accuracy(model))
# softmax = SoftmaxIgnoringZero()
# linear = nn.Linear(20, 10)
# net = nn.Sequential(linear, softmax)
# optimizer = torch.optim.SGD(net.parameters(), lr=10, momentum=0.9)
# x = torch.rand((64, 20))
# y_g = torch.rand((64, 10))
# for _ in range(100):
# y = net(x)
# # print(y)
# loss = F.mse_loss(y, y_g)
# optimizer.zero_grad()
# loss.backward()
# # print(linear.weight.grad)
# optimizer.step()
# print(loss)
softmax = SoftmaxIgnoringZero()
x = torch.tensor([
[1, 0, 2],
[4, 0, 9],
[0, 0, 0],
[1, 1, 1]
]).float()
print(softmax(x))
x = torch.tensor([
[1, 2],
[4, 9],
]).float()
print(softmax(x)) |