File size: 15,559 Bytes
b84549f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 |
from data import ABDataset
from utils.common.data_record import read_json, write_json
from PIL import Image
import os
from utils.common.file import ensure_dir
import numpy as np
from itertools import groupby
from skimage import morphology, measure
from PIL import Image
from scipy import misc
import tqdm
from PIL import ImageFile
ImageFile.LOAD_TRUNCATED_IMAGES = True
import shutil
def convert_seg_dataset_to_det(seg_imgs_path, seg_labels_path, root_dir, target_coco_ann_path, ignore_classes_idx, thread_i, min_img_size=224, label_after_hook=lambda x: x):
"""
Reference: https://blog.csdn.net/lizaijinsheng/article/details/119889946
NOTE:
Background class should not be considered.
However, if a seg dataset has only one valid class, so that the generated cls dataset also has only one class and
the cls accuracy will be 100% forever. But we do not use the generated cls dataset alone, so it is ok.
"""
assert len(seg_imgs_path) == len(seg_labels_path)
classes_imgs_id_map = {}
coco_ann = {
'categories': [],
"type": "instances",
'images': [],
'annotations': []
}
image_id = 0
ann_id = 0
pbar = tqdm.tqdm(zip(seg_imgs_path, seg_labels_path), total=len(seg_imgs_path),
dynamic_ncols=True, leave=False, desc=f'thread {thread_i}')
for seg_img_path, seg_label_path in pbar:
try:
seg_img = Image.open(seg_img_path)
seg_label = Image.open(seg_label_path).convert('L')
seg_label = np.array(seg_label)
seg_label = label_after_hook(seg_label)
except Exception as e:
print(e)
print(f'file {seg_img_path} error, skip')
exit()
# seg_img = Image.open(seg_img_path)
# seg_label = Image.open(seg_label_path).convert('L')
# seg_label = np.array(seg_label)
image_coco_info = {'file_name': os.path.relpath(seg_img_path, root_dir), 'height': seg_img.height, 'width': seg_img.width,
'id':image_id}
image_id += 1
coco_ann['images'] += [image_coco_info]
this_img_classes = set(seg_label.reshape(-1).tolist())
# print(this_img_classes)
for class_idx in this_img_classes:
if class_idx in ignore_classes_idx:
continue
if class_idx not in classes_imgs_id_map.keys():
classes_imgs_id_map[class_idx] = 0
mask = np.zeros((seg_label.shape[0], seg_label.shape[1]), dtype=np.uint8)
mask[seg_label == class_idx] = 1
mask_without_small = morphology.remove_small_objects(mask, min_size=10, connectivity=2)
label_image = measure.label(mask_without_small)
for region in measure.regionprops(label_image):
bbox = region.bbox # (top, left, bottom, right)
bbox = [bbox[1], bbox[0], bbox[3], bbox[2]] # (left, top, right, bottom)
width, height = bbox[2] - bbox[0], bbox[3] - bbox[1]
if width < min_img_size or height < min_img_size:
continue
# target_cropped_img_path = os.path.join(target_cls_data_dir, str(class_idx),
# f'{classes_imgs_id_map[class_idx]}.{seg_img_path.split(".")[-1]}')
# ensure_dir(target_cropped_img_path)
# seg_img.crop(bbox).save(target_cropped_img_path)
# print(target_cropped_img_path)
# exit()
ann_coco_info = {'area': width*height, 'iscrowd': 0, 'image_id':
image_id - 1, 'bbox': [bbox[0], bbox[1], width, height],
'category_id': class_idx,
'id': ann_id, 'ignore': 0,
'segmentation': []}
ann_id += 1
coco_ann['annotations'] += [ann_coco_info]
classes_imgs_id_map[class_idx] += 1
pbar.set_description(f'# ann: {ann_id}')
coco_ann['categories'] = [
{'id': ci, 'name': f'class_{c}_in_seg'} for ci, c in enumerate(classes_imgs_id_map.keys())
]
c_to_ci_map = {c: ci for ci, c in enumerate(classes_imgs_id_map.keys())}
for ann in coco_ann['annotations']:
ann['category_id'] = c_to_ci_map[
ann['category_id']
]
write_json(target_coco_ann_path, coco_ann, indent=0, backup=True)
write_json(os.path.join(root_dir, 'coco_ann.json'), coco_ann, indent=0, backup=True)
num_cls_imgs = 0
for k, v in classes_imgs_id_map.items():
# print(f'# class {k}: {v + 1}')
num_cls_imgs += v
# print(f'total: {num_cls_imgs}')
return classes_imgs_id_map
from concurrent.futures import ThreadPoolExecutor
# def convert_seg_dataset_to_cls_multi_thread(seg_imgs_path, seg_labels_path, target_cls_data_dir, ignore_classes_idx, num_threads):
# if os.path.exists(target_cls_data_dir):
# shutil.rmtree(target_cls_data_dir)
# assert len(seg_imgs_path) == len(seg_labels_path)
# n = len(seg_imgs_path) // num_threads
# pool = ThreadPoolExecutor(max_workers=num_threads)
# # threads = []
# futures = []
# for thread_i in range(num_threads):
# # thread = threading.Thread(target=convert_seg_dataset_to_cls,
# # args=(seg_imgs_path[thread_i * n: (thread_i + 1) * n],
# # seg_labels_path[thread_i * n: (thread_i + 1) * n],
# # target_cls_data_dir, ignore_classes_idx))
# # threads += [thread]
# future = pool.submit(convert_seg_dataset_to_cls, *(seg_imgs_path[thread_i * n: (thread_i + 1) * n],
# seg_labels_path[thread_i * n: (thread_i + 1) * n],
# target_cls_data_dir, ignore_classes_idx, thread_i))
# futures += [future]
# futures += [
# pool.submit(convert_seg_dataset_to_cls, *(seg_imgs_path[(thread_i + 1) * n: ],
# seg_labels_path[(thread_i + 1) * n: ],
# target_cls_data_dir, ignore_classes_idx, thread_i))
# ]
# for f in futures:
# f.done()
# res = []
# for f in futures:
# res += [f.result()]
# print(res[-1])
# res_dist = {}
# for r in res:
# for k, v in r.items():
# if k in res_dist.keys():
# res_dist[k] += v
# else:
# res_dist[k] = v
# print('results:')
# print(res_dist)
# pool.shutdown()
# import random
# def random_crop_aug(target_dir):
# for class_dir in os.listdir(target_dir):
# class_dir = os.path.join(target_dir, class_dir)
# for img_path in os.listdir(class_dir):
# img_path = os.path.join(class_dir, img_path)
# img = Image.open(img_path)
# w, h = img.width, img.height
# for ri in range(5):
# img.crop(
# [
# random.randint(0, w // 5),
# random.randint(0, h // 5),
# random.randint(w // 5 * 4, w),
# random.randint(h // 5 * 4, h)
# ]
# ).save(
# os.path.join(os.path.dirname(img_path), f'randaug_{ri}_' + os.path.basename(img_path))
# )
# # print(img_path)
# # exit()
def post_ignore_classes(coco_ann_json_path):
# from data.datasets.object_detection.yolox_data_util.api import remap_dataset
# remap_dataset(coco_ann_json_path, [], {})
pass
if __name__ == '__main__':
# SuperviselyPerson
# root_dir = '/data/zql/datasets/supervisely_person_full_20230635/Supervisely Person Dataset'
# images_path, labels_path = [], []
# for p in os.listdir(root_dir):
# if p.startswith('ds'):
# p1 = os.path.join(root_dir, p, 'img')
# images_path += [(p, os.path.join(p1, n)) for n in os.listdir(p1)]
# for dsi, img_p in images_path:
# target_p = os.path.join(root_dir, p, dsi, img_p.split('/')[-1])
# labels_path += [target_p]
# images_path = [i[1] for i in images_path]
# target_coco_ann_path = '/data/zql/datasets/supervisely_person_for_det_task/coco_ann.json'
# if os.path.exists(target_coco_ann_path):
# os.remove(target_coco_ann_path)
# convert_seg_dataset_to_det(
# seg_imgs_path=images_path,
# seg_labels_path=labels_path,
# root_dir=root_dir,
# target_coco_ann_path=target_coco_ann_path,
# ignore_classes_idx=[0, 2],
# # num_threads=8
# thread_i=0
# )
# random_crop_aug('/data/zql/datasets/supervisely_person_for_cls_task')
# GTA5
# root_dir = '/data/zql/datasets/GTA-ls-copy/GTA5'
# images_path, labels_path = [], []
# for p in os.listdir(os.path.join(root_dir, 'images')):
# p = os.path.join(root_dir, 'images', p)
# if not p.endswith('png'):
# continue
# images_path += [p]
# labels_path += [p.replace('images', 'labels_gt')]
# target_coco_ann_path = '/data/zql/datasets/gta5_for_det_task/coco_ann.json'
# if os.path.exists(target_coco_ann_path):
# os.remove(target_coco_ann_path)
# """
# [
# 'road', 'sidewalk', 'building', 'wall',
# 'fence', 'pole', 'light', 'sign',
# 'vegetation', 'terrain', 'sky', 'people', # person
# 'rider', 'car', 'truck', 'bus', 'train',
# 'motocycle', 'bicycle'
# ]
# """
# need_classes_idx = [13, 15]
# convert_seg_dataset_to_det(
# seg_imgs_path=images_path,
# seg_labels_path=labels_path,
# root_dir=root_dir,
# target_coco_ann_path=target_coco_ann_path,
# ignore_classes_idx=[i for i in range(20) if i not in need_classes_idx],
# thread_i=0
# )
# from data.datasets.object_detection.yolox_data_util.api import remap_dataset
# new_coco_ann_json_path = remap_dataset('/data/zql/datasets/GTA-ls-copy/GTA5/coco_ann.json', [-1], {0: 0, 1:-1, 2:-1, 3: 1, 4:-1, 5:-1})
# print(new_coco_ann_json_path)
# cityscapes
# root_dir = '/data/zql/datasets/cityscape/'
# def _get_target_suffix(mode: str, target_type: str) -> str:
# if target_type == 'instance':
# return '{}_instanceIds.png'.format(mode)
# elif target_type == 'semantic':
# return '{}_labelIds.png'.format(mode)
# elif target_type == 'color':
# return '{}_color.png'.format(mode)
# else:
# return '{}_polygons.json'.format(mode)
# images_path, labels_path = [], []
# split = 'train'
# images_dir = os.path.join(root_dir, 'leftImg8bit', split)
# targets_dir = os.path.join(root_dir, 'gtFine', split)
# for city in os.listdir(images_dir):
# img_dir = os.path.join(images_dir, city)
# target_dir = os.path.join(targets_dir, city)
# for file_name in os.listdir(img_dir):
# target_types = []
# for t in ['semantic']:
# target_name = '{}_{}'.format(file_name.split('_leftImg8bit')[0],
# _get_target_suffix('gtFine', t))
# target_types.append(os.path.join(target_dir, target_name))
# images_path.append(os.path.join(img_dir, file_name))
# labels_path.append(target_types[0])
# # print(images_path[0: 5], '\n', labels_path[0: 5])
# target_coco_ann_path = '/data/zql/datasets/cityscape/coco_ann.json'
# # if os.path.exists(target_dir):
# # shutil.rmtree(target_dir)
# need_classes_idx = [26, 28]
# convert_seg_dataset_to_det(
# seg_imgs_path=images_path,
# seg_labels_path=labels_path,
# root_dir=root_dir,
# target_coco_ann_path=target_coco_ann_path,
# ignore_classes_idx=[i for i in range(80) if i not in need_classes_idx],
# # num_threads=8
# thread_i=0
# )
# import shutil
# ignore_target_dir = '/data/zql/datasets/cityscapes_for_cls_task_ignored'
# ignore_label = 255
# raw_idx_map_in_y_transform = {-1: ignore_label, 0: ignore_label, 1: ignore_label, 2: ignore_label,
# 3: ignore_label, 4: ignore_label, 5: ignore_label, 6: ignore_label,
# 7: 0, 8: 1, 9: ignore_label, 10: ignore_label, 11: 2, 12: 3, 13: 4,
# 14: ignore_label, 15: ignore_label, 16: ignore_label, 17: 5,
# 18: ignore_label, 19: 6, 20: 7, 21: 8, 22: 9, 23: 10, 24: 11, 25: 12, 26: 13, 27: 14,
# 28: 15, 29: ignore_label, 30: ignore_label, 31: 16, 32: 17, 33: 18}
# ignore_classes_idx = [k for k, v in raw_idx_map_in_y_transform.items() if v == ignore_label]
# ignore_classes_idx = sorted(ignore_classes_idx)
# for class_dir in os.listdir(target_dir):
# if int(class_dir) in ignore_classes_idx:
# continue
# shutil.move(
# os.path.join(target_dir, class_dir),
# os.path.join(ignore_target_dir, class_dir)
# )
# else:
# shutil.move(
# os.path.join(target_dir, class_dir),
# os.path.join(target_dir, str(raw_idx_map_in_y_transform[int(class_dir)]))
# )
# continue
# print(class_dir)
# exit()
# baidu person
# root_dir = '/data/zql/datasets/baidu_person/clean_images/'
# images_path, labels_path = [], []
# for p in os.listdir(os.path.join(root_dir, 'images')):
# images_path += [os.path.join(root_dir, 'images', p)]
# labels_path += [os.path.join(root_dir, 'profiles', p.split('.')[0] + '-profile.jpg')]
# target_dir = '/data/zql/datasets/baiduperson_for_cls_task'
# # if os.path.exists(target_dir):
# # shutil.rmtree(target_dir)
# def label_after_hook(x):
# x[x > 1] = 1
# return x
# convert_seg_dataset_to_det(
# seg_imgs_path=images_path,
# seg_labels_path=labels_path,
# root_dir=root_dir,
# target_coco_ann_path='/data/zql/datasets/baidu_person/clean_images/coco_ann_zql.json',
# ignore_classes_idx=[1],
# # num_threads=8
# thread_i=1,
# min_img_size=224,
# label_after_hook=label_after_hook
# )
# from data.visualize import visualize_classes_in_object_detection
# from data import get_dataset
# d = get_dataset('CityscapesDet', '/data/zql/datasets/cityscape/', 'val', None, [], None)
# visualize_classes_in_object_detection(d, {'car': 0, 'bus': 1}, {}, 'debug.png')
# d = get_dataset('GTA5Det', '/data/zql/datasets/GTA-ls-copy/GTA5', 'val', None, [], None)
# visualize_classes_in_object_detection(d, {'car': 0, 'bus': 1}, {}, 'debug.png')
# d = get_dataset('BaiduPersonDet', '/data/zql/datasets/baidu_person/clean_images/', 'val', None, [], None)
# visualize_classes_in_object_detection(d, {'person': 0}, {}, 'debug.png') |