File size: 22,938 Bytes
b84549f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
import enum
from functools import reduce
from typing import Dict, List, Tuple
import numpy as np
import copy
from utils.common.log import logger
from ..datasets.ab_dataset import ABDataset
from ..datasets.dataset_split import train_val_split
from ..dataloader import FastDataLoader, InfiniteDataLoader, build_dataloader
from data import get_dataset


class DatasetMetaInfo:
    def __init__(self, name, 
                 known_classes_name_idx_map, unknown_class_idx):
        
        assert unknown_class_idx not in known_classes_name_idx_map.keys()
        
        self.name = name
        self.unknown_class_idx = unknown_class_idx
        self.known_classes_name_idx_map = known_classes_name_idx_map
        
    @property
    def num_classes(self):
        return len(self.known_classes_idx) + 1
        
        
class MergedDataset:
    def __init__(self, datasets: List[ABDataset]):
        self.datasets = datasets
        self.datasets_len = [len(i) for i in self.datasets]
        logger.info(f'create MergedDataset: len of datasets {self.datasets_len}')
        self.datasets_cum_len = np.cumsum(self.datasets_len)

    def __getitem__(self, idx):
        for i, cum_len in enumerate(self.datasets_cum_len):
            if idx < cum_len:
                return self.datasets[i][idx - sum(self.datasets_len[0: i])]
            
    def __len__(self):
        return sum(self.datasets_len)
    
    
class IndexReturnedDataset:
    def __init__(self, dataset: ABDataset):
        self.dataset = dataset
        
    def __getitem__(self, idx):
        res = self.dataset[idx]

        if isinstance(res, (tuple, list)):
            return (*res, idx)
        else:
            return res, idx
            
    def __len__(self):
        return len(self.dataset)
    

# class Scenario:
#     def __init__(self, config,
#                  source_datasets_meta_info: Dict[str, DatasetMetaInfo], target_datasets_meta_info: Dict[str, DatasetMetaInfo], 
#                  target_source_map: Dict[str, Dict[str, str]], 
#                  target_domains_order: List[str],
#                  source_datasets: Dict[str, Dict[str, ABDataset]], target_datasets: Dict[str, Dict[str, ABDataset]]):
        
#         self.__config = config
#         self.__source_datasets_meta_info = source_datasets_meta_info
#         self.__target_datasets_meta_info = target_datasets_meta_info
#         self.__target_source_map = target_source_map
#         self.__target_domains_order = target_domains_order
#         self.__source_datasets = source_datasets
#         self.__target_datasets = target_datasets
    
#     # 1. basic
#     def get_config(self):
#         return copy.deepcopy(self.__config)
    
#     def get_task_type(self):
#         return list(self.__source_datasets.values())[0]['train'].task_type
    
#     def get_num_classes(self):
#         known_classes_idx = []
#         unknown_classes_idx = []
#         for v in self.__source_datasets_meta_info.values():
#             known_classes_idx += list(v.known_classes_name_idx_map.values())
#             unknown_classes_idx += [v.unknown_class_idx]
#         for v in self.__target_datasets_meta_info.values():
#             known_classes_idx += list(v.known_classes_name_idx_map.values())
#             unknown_classes_idx += [v.unknown_class_idx]
#         unknown_classes_idx = [i for i in unknown_classes_idx if i is not None]
#         # print(known_classes_idx, unknown_classes_idx)
#         res = len(set(known_classes_idx)), len(set(unknown_classes_idx)), len(set(known_classes_idx + unknown_classes_idx))
#         # print(res)
#         assert res[0] + res[1] == res[2]
#         return res
      
#     def build_dataloader(self, dataset: ABDataset, batch_size: int, num_workers: int, infinite: bool, shuffle_when_finite: bool):
#         if infinite:
#             dataloader = InfiniteDataLoader(
#                 dataset, None, batch_size, num_workers=num_workers)
#         else:
#             dataloader = FastDataLoader(
#                 dataset, batch_size, num_workers, shuffle=shuffle_when_finite)

#         return dataloader
    
#     def build_sub_dataset(self, dataset: ABDataset, indexes: List[int]):
#         from ..data.datasets.dataset_split import _SplitDataset
#         dataset.dataset = _SplitDataset(dataset.dataset, indexes)
#         return dataset
    
#     def build_index_returned_dataset(self, dataset: ABDataset):
#         return IndexReturnedDataset(dataset)
        
#     # 2. source
#     def get_source_datasets_meta_info(self):
#         return self.__source_datasets_meta_info
    
#     def get_source_datasets_name(self):
#         return list(self.__source_datasets.keys())
    
#     def get_merged_source_dataset(self, split):
#         source_train_datasets = {n: d[split] for n, d in self.__source_datasets.items()}
#         return MergedDataset(list(source_train_datasets.values()))
    
#     def get_source_datasets(self, split):
#         source_train_datasets = {n: d[split] for n, d in self.__source_datasets.items()}
#         return source_train_datasets
    
#     # 3. target **domain**
#     # (do we need such API `get_ith_target_domain()`?)
#     def get_target_domains_meta_info(self):
#         return self.__source_datasets_meta_info
    
#     def get_target_domains_order(self):
#         return self.__target_domains_order
    
#     def get_corr_source_datasets_name_of_target_domain(self, target_domain_name):
#         return self.__target_source_map[target_domain_name]
    
#     def get_limited_target_train_dataset(self):
#         if len(self.__target_domains_order) > 1:
#             raise RuntimeError('this API is only for pass-in scenario in user-defined online DA algorithm')
#         return list(self.__target_datasets.values())[0]['train']
    
#     def get_target_domains_iterator(self, split):
#         for target_domain_index, target_domain_name in enumerate(self.__target_domains_order):
#             target_dataset = self.__target_datasets[target_domain_name]
#             target_domain_meta_info = self.__target_datasets_meta_info[target_domain_name]
            
#             yield target_domain_index, target_domain_name, target_dataset[split], target_domain_meta_info
    
#     # 4. permission management
#     def get_sub_scenario(self, source_datasets_name, source_splits, target_domains_order, target_splits):
#         def get_split(dataset, splits):
#             res = {}
#             for s, d in dataset.items():
#                 if s in splits:
#                     res[s] = d
#             return res
        
#         return Scenario(
#             config=self.__config,
#             source_datasets_meta_info={k: v for k, v in self.__source_datasets_meta_info.items() if k in source_datasets_name},
#             target_datasets_meta_info={k: v for k, v in self.__target_datasets_meta_info.items() if k in target_domains_order},
#             target_source_map={k: v for k, v in self.__target_source_map.items() if k in target_domains_order},
#             target_domains_order=target_domains_order,
#             source_datasets={k: get_split(v, source_splits) for k, v in self.__source_datasets.items() if k in source_datasets_name},
#             target_datasets={k: get_split(v, target_splits) for k, v in self.__target_datasets.items() if k in target_domains_order}
#         )
    
#     def get_only_source_sub_scenario_for_exp_tracker(self):
#         return self.get_sub_scenario(self.get_source_datasets_name(), ['train', 'val', 'test'], [], [])
    
#     def get_only_source_sub_scenario_for_alg(self):
#         return self.get_sub_scenario(self.get_source_datasets_name(), ['train'], [], [])
    
#     def get_one_da_sub_scenario_for_alg(self, target_domain_name):
#         return self.get_sub_scenario(self.get_corr_source_datasets_name_of_target_domain(target_domain_name), 
#                                      ['train', 'val'], [target_domain_name], ['train'])


# class Scenario:
#     def __init__(self, config,
                 
#                  offline_source_datasets_meta_info: Dict[str, DatasetMetaInfo], 
#                  offline_source_datasets: Dict[str, ABDataset],
                 
#                  online_datasets_meta_info: List[Tuple[Dict[str, DatasetMetaInfo], DatasetMetaInfo]],
#                  online_datasets: Dict[str, ABDataset],
#                  target_domains_order: List[str],
#                  target_source_map: Dict[str, Dict[str, str]],
                 
#                  num_classes: int):
        
#         self.config = config
        
#         self.offline_source_datasets_meta_info = offline_source_datasets_meta_info
#         self.offline_source_datasets = offline_source_datasets
        
#         self.online_datasets_meta_info = online_datasets_meta_info
#         self.online_datasets = online_datasets
        
#         self.target_domains_order = target_domains_order
#         self.target_source_map = target_source_map
        
#         self.num_classes = num_classes
        
#     def get_offline_source_datasets(self, split):
#         return {n: d[split] for n, d in self.offline_source_datasets.items()}
    
#     def get_offline_source_merged_dataset(self, split):
#         return MergedDataset([d[split] for d in self.offline_source_datasets.values()])
    
#     def get_online_current_corresponding_source_datasets(self, domain_index, split):
#         cur_target_domain_name = self.target_domains_order[domain_index]
#         cur_source_datasets_name = list(self.target_source_map[cur_target_domain_name].keys())
#         cur_source_datasets = {n: self.online_datasets[n + '|' + cur_target_domain_name][split] for n in cur_source_datasets_name}
#         return cur_source_datasets
    
#     def get_online_current_corresponding_merged_source_dataset(self, domain_index, split):
#         cur_target_domain_name = self.target_domains_order[domain_index]
#         cur_source_datasets_name = list(self.target_source_map[cur_target_domain_name].keys())
#         cur_source_datasets = {n: self.online_datasets[n + '|' + cur_target_domain_name][split] for n in cur_source_datasets_name}
#         return MergedDataset([d for d in cur_source_datasets.values()])
    
#     def get_online_current_target_dataset(self, domain_index, split):
#         cur_target_domain_name = self.target_domains_order[domain_index]
#         return self.online_datasets[cur_target_domain_name][split]
    
#     def build_dataloader(self, dataset: ABDataset, batch_size: int, num_workers: int, 
#                          infinite: bool, shuffle_when_finite: bool, to_iterator: bool):
#         if infinite:
#             dataloader = InfiniteDataLoader(
#                 dataset, None, batch_size, num_workers=num_workers)
#         else:
#             dataloader = FastDataLoader(
#                 dataset, batch_size, num_workers, shuffle=shuffle_when_finite)
            
#         if to_iterator:
#             dataloader = iter(dataloader)

#         return dataloader
    
#     def build_sub_dataset(self, dataset: ABDataset, indexes: List[int]):
#         from data.datasets.dataset_split import _SplitDataset
#         dataset.dataset = _SplitDataset(dataset.dataset, indexes)
#         return dataset
    
#     def build_index_returned_dataset(self, dataset: ABDataset):
#         return IndexReturnedDataset(dataset)
    
#     def get_config(self):
#         return copy.deepcopy(self.config)
    
#     def get_task_type(self):
#         return list(self.online_datasets.values())[0]['train'].task_type
    
#     def get_num_classes(self):
#         return self.num_classes
    

class Scenario:
    def __init__(self, config, all_datasets_ignore_classes_map, all_datasets_idx_map, target_domains_order, target_source_map, 
                 all_datasets_e2e_class_to_idx_map,
                 num_classes):
        self.config = config 
        self.all_datasets_ignore_classes_map = all_datasets_ignore_classes_map
        self.all_datasets_idx_map = all_datasets_idx_map
        self.target_domains_order = target_domains_order
        self.target_source_map = target_source_map
        self.all_datasets_e2e_class_to_idx_map = all_datasets_e2e_class_to_idx_map
        self.num_classes = num_classes
        self.cur_domain_index = 0

        logger.info(f'[scenario build] # classes: {num_classes}')
        logger.debug(f'[scenario build] idx map: {all_datasets_idx_map}')
        
    def to_json(self):
        return dict(
            config=self.config, all_datasets_ignore_classes_map=self.all_datasets_ignore_classes_map,
            all_datasets_idx_map=self.all_datasets_idx_map, target_domains_order=self.target_domains_order,
            target_source_map=self.target_source_map, 
            all_datasets_e2e_class_to_idx_map=self.all_datasets_e2e_class_to_idx_map,
            num_classes=self.num_classes
        )
        
    def __str__(self):
        return f'Scenario({self.to_json()})'

    def get_offline_datasets(self, transform=None):
        # make source datasets which contains all unioned classes
        res_offline_train_source_datasets_map = {}

        from .. import get_dataset
        data_dirs = self.config['data_dirs']

        source_datasets_name = self.config['source_datasets_name']

        # ori_datasets_map = {d: get_dataset(d, data_dirs[d], None, None, None, None) for d in source_datasets_name}
        # res_source_datasets_map = {k: {split: train_val_split(copy.deepcopy(v), split, rate=0.97) for split in ['train', 'val']} for k, v in ori_datasets_map.items()}
        # for ds in res_source_datasets_map.values():
        #     for k, v in ds.items():
        #         v.underlying_dataset.dataset.setSplit(k)
        res_source_datasets_map = {d: {split: get_dataset(d, data_dirs[d], split, 
                                                      transform,
                                                      self.all_datasets_ignore_classes_map[d], self.all_datasets_idx_map[d]) 
                                   for split in ['train', 'val', 'test']} 
                               for d in self.all_datasets_ignore_classes_map.keys() if d in source_datasets_name}
        
        # for source_dataset_name in self.config['source_datasets_name']:
        #     source_datasets = [v for k, v in res_source_datasets_map.items() if source_dataset_name in k]

        #     # how to merge idx map?
        #     # 35 79 97
        #     idx_maps = [d['train'].idx_map for d in source_datasets]
        #     ignore_classes_list = [d['train'].ignore_classes for d in source_datasets]
            
        #     union_idx_map = {}
        #     for idx_map in idx_maps:
        #         for k, v in idx_map.items():
        #             if k not in union_idx_map:
        #                 union_idx_map[k] = v
        #             else:
        #                 assert union_idx_map[k] == v

        #     union_ignore_classes = reduce(lambda res, cur: res & set(cur), ignore_classes_list, set(ignore_classes_list[0]))
        #     assert len(union_ignore_classes) + len(union_idx_map) == len(source_datasets[0]['train'].raw_classes)

        #     logger.info(f'[scenario build] {source_dataset_name} has {len(union_idx_map)} classes in offline training')
            
        #     d = source_dataset_name
        #     res_offline_train_source_datasets_map[d] = {split: get_dataset(d, data_dirs[d], split, 
        #                                               transform,
        #                                               union_ignore_classes, union_idx_map) 
        #                            for split in ['train', 'val', 'test']} 
        
        return res_source_datasets_map
    
    def get_offline_datasets_args(self):
        # make source datasets which contains all unioned classes
        res_offline_train_source_datasets_map = {}

        from .. import get_dataset
        data_dirs = self.config['data_dirs']

        source_datasets_name = self.config['source_datasets_name']
        res_source_datasets_map = {d: {split: get_dataset(d.split('|')[0], data_dirs[d.split('|')[0]], split, 
                                                      None,
                                                      self.all_datasets_ignore_classes_map[d], self.all_datasets_idx_map[d]) 
                                   for split in ['train', 'val', 'test']} 
                               for d in self.all_datasets_ignore_classes_map.keys() if d.split('|')[0] in source_datasets_name}
        
        for source_dataset_name in self.config['source_datasets_name']:
            source_datasets = [v for k, v in res_source_datasets_map.items() if source_dataset_name in k]

            # how to merge idx map?
            # 35 79 97
            idx_maps = [d['train'].idx_map for d in source_datasets]
            ignore_classes_list = [d['train'].ignore_classes for d in source_datasets]
            
            union_idx_map = {}
            for idx_map in idx_maps:
                for k, v in idx_map.items():
                    if k not in union_idx_map:
                        union_idx_map[k] = v
                    else:
                        assert union_idx_map[k] == v

            union_ignore_classes = reduce(lambda res, cur: res & set(cur), ignore_classes_list, set(ignore_classes_list[0]))
            assert len(union_ignore_classes) + len(union_idx_map) == len(source_datasets[0]['train'].raw_classes)

            logger.info(f'[scenario build] {source_dataset_name} has {len(union_idx_map)} classes in offline training')
            
            d = source_dataset_name
            res_offline_train_source_datasets_map[d] = {split: dict(d, data_dirs[d], split, 
                                                      None,
                                                      union_ignore_classes, union_idx_map) 
                                   for split in ['train', 'val', 'test']} 

        return res_offline_train_source_datasets_map

        # for d in source_datasets_name:
        #     source_dataset_with_max_num_classes = None
            
        #     for ed_name, ed in res_source_datasets_map.items():
        #         if not ed_name.startswith(d):
        #             continue
                
        #         if source_dataset_with_max_num_classes is None:
        #             source_dataset_with_max_num_classes = ed
        #             res_offline_train_source_datasets_map_names[d] = ed_name
                    
        #         if len(ed['train'].ignore_classes) < len(source_dataset_with_max_num_classes['train'].ignore_classes):
        #             source_dataset_with_max_num_classes = ed
        #             res_offline_train_source_datasets_map_names[d] = ed_name
                    
        #     res_offline_train_source_datasets_map[d] = source_dataset_with_max_num_classes

        # return res_offline_train_source_datasets_map
        
    def get_online_ith_domain_datasets_args_for_inference(self, domain_index):
        target_dataset_name = self.target_domains_order[domain_index]
        # dataset_name: Any, root_dir: Any, split: Any, transform: Any | None = None, ignore_classes: Any = [], idx_map: Any | None = None
        
        if 'MM-CityscapesDet' in self.target_domains_order or 'CityscapesDet' in self.target_domains_order or 'BaiduPersonDet' in self.target_domains_order:
            logger.info(f'use val split for inference test (only Det workload)')
            split = 'test'
        else:
            split = 'train'
        
        return dict(dataset_name=target_dataset_name, 
                    root_dir=self.config['data_dirs'][target_dataset_name], 
                    split=split, 
                    transform=None, 
                    ignore_classes=self.all_datasets_ignore_classes_map[target_dataset_name], 
                    idx_map=self.all_datasets_idx_map[target_dataset_name])
    
    def get_online_ith_domain_datasets_args_for_training(self, domain_index):
        target_dataset_name = self.target_domains_order[domain_index]
        source_datasets_name = list(self.target_source_map[target_dataset_name].keys())

        res = {}
        # dataset_name: Any, root_dir: Any, split: Any, transform: Any | None = None, ignore_classes: Any = [], idx_map: Any | None = None
        res[target_dataset_name] = {split: dict(dataset_name=target_dataset_name, 
                    root_dir=self.config['data_dirs'][target_dataset_name], 
                    split=split, 
                    transform=None, 
                    ignore_classes=self.all_datasets_ignore_classes_map[target_dataset_name], 
                    idx_map=self.all_datasets_idx_map[target_dataset_name]) for split in ['train', 'val']}
        for d in source_datasets_name:
            res[d] = {split: dict(dataset_name=d, 
                    root_dir=self.config['data_dirs'][d], 
                    split=split, 
                    transform=None, 
                    ignore_classes=self.all_datasets_ignore_classes_map[d + '|' + target_dataset_name], 
                    idx_map=self.all_datasets_idx_map[d + '|' + target_dataset_name]) for split in ['train', 'val']}
        
        return res
    
    def get_online_cur_domain_datasets_args_for_inference(self):
        return self.get_online_ith_domain_datasets_args_for_inference(self.cur_domain_index)
    
    def get_online_cur_domain_datasets_args_for_training(self):
        return self.get_online_ith_domain_datasets_args_for_training(self.cur_domain_index)
    
    def get_online_cur_domain_datasets_for_training(self, transform=None):
        res = {}
        datasets_args = self.get_online_ith_domain_datasets_args_for_training(self.cur_domain_index)
        for dataset_name, dataset_args in datasets_args.items():
            res[dataset_name] = {}
            for split, args in dataset_args.items():
                if transform is not None:
                    args['transform'] = transform
                dataset = get_dataset(**args)
                res[dataset_name][split] = dataset
        return res
    
    def get_online_cur_domain_datasets_for_inference(self, transform=None):
        datasets_args = self.get_online_ith_domain_datasets_args_for_inference(self.cur_domain_index)
        if transform is not None:
            datasets_args['transform'] = transform
        return get_dataset(**datasets_args)
    
    def get_online_cur_domain_samples_for_training(self, num_samples, transform=None, collate_fn=None):
        dataset = self.get_online_cur_domain_datasets_for_training(transform=transform)
        dataset = dataset[self.target_domains_order[self.cur_domain_index]]['train']
        return next(iter(build_dataloader(dataset, num_samples, 0, True, None, collate_fn=collate_fn)))[0]

    def next_domain(self):
        self.cur_domain_index += 1