File size: 22,938 Bytes
b84549f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 |
import enum
from functools import reduce
from typing import Dict, List, Tuple
import numpy as np
import copy
from utils.common.log import logger
from ..datasets.ab_dataset import ABDataset
from ..datasets.dataset_split import train_val_split
from ..dataloader import FastDataLoader, InfiniteDataLoader, build_dataloader
from data import get_dataset
class DatasetMetaInfo:
def __init__(self, name,
known_classes_name_idx_map, unknown_class_idx):
assert unknown_class_idx not in known_classes_name_idx_map.keys()
self.name = name
self.unknown_class_idx = unknown_class_idx
self.known_classes_name_idx_map = known_classes_name_idx_map
@property
def num_classes(self):
return len(self.known_classes_idx) + 1
class MergedDataset:
def __init__(self, datasets: List[ABDataset]):
self.datasets = datasets
self.datasets_len = [len(i) for i in self.datasets]
logger.info(f'create MergedDataset: len of datasets {self.datasets_len}')
self.datasets_cum_len = np.cumsum(self.datasets_len)
def __getitem__(self, idx):
for i, cum_len in enumerate(self.datasets_cum_len):
if idx < cum_len:
return self.datasets[i][idx - sum(self.datasets_len[0: i])]
def __len__(self):
return sum(self.datasets_len)
class IndexReturnedDataset:
def __init__(self, dataset: ABDataset):
self.dataset = dataset
def __getitem__(self, idx):
res = self.dataset[idx]
if isinstance(res, (tuple, list)):
return (*res, idx)
else:
return res, idx
def __len__(self):
return len(self.dataset)
# class Scenario:
# def __init__(self, config,
# source_datasets_meta_info: Dict[str, DatasetMetaInfo], target_datasets_meta_info: Dict[str, DatasetMetaInfo],
# target_source_map: Dict[str, Dict[str, str]],
# target_domains_order: List[str],
# source_datasets: Dict[str, Dict[str, ABDataset]], target_datasets: Dict[str, Dict[str, ABDataset]]):
# self.__config = config
# self.__source_datasets_meta_info = source_datasets_meta_info
# self.__target_datasets_meta_info = target_datasets_meta_info
# self.__target_source_map = target_source_map
# self.__target_domains_order = target_domains_order
# self.__source_datasets = source_datasets
# self.__target_datasets = target_datasets
# # 1. basic
# def get_config(self):
# return copy.deepcopy(self.__config)
# def get_task_type(self):
# return list(self.__source_datasets.values())[0]['train'].task_type
# def get_num_classes(self):
# known_classes_idx = []
# unknown_classes_idx = []
# for v in self.__source_datasets_meta_info.values():
# known_classes_idx += list(v.known_classes_name_idx_map.values())
# unknown_classes_idx += [v.unknown_class_idx]
# for v in self.__target_datasets_meta_info.values():
# known_classes_idx += list(v.known_classes_name_idx_map.values())
# unknown_classes_idx += [v.unknown_class_idx]
# unknown_classes_idx = [i for i in unknown_classes_idx if i is not None]
# # print(known_classes_idx, unknown_classes_idx)
# res = len(set(known_classes_idx)), len(set(unknown_classes_idx)), len(set(known_classes_idx + unknown_classes_idx))
# # print(res)
# assert res[0] + res[1] == res[2]
# return res
# def build_dataloader(self, dataset: ABDataset, batch_size: int, num_workers: int, infinite: bool, shuffle_when_finite: bool):
# if infinite:
# dataloader = InfiniteDataLoader(
# dataset, None, batch_size, num_workers=num_workers)
# else:
# dataloader = FastDataLoader(
# dataset, batch_size, num_workers, shuffle=shuffle_when_finite)
# return dataloader
# def build_sub_dataset(self, dataset: ABDataset, indexes: List[int]):
# from ..data.datasets.dataset_split import _SplitDataset
# dataset.dataset = _SplitDataset(dataset.dataset, indexes)
# return dataset
# def build_index_returned_dataset(self, dataset: ABDataset):
# return IndexReturnedDataset(dataset)
# # 2. source
# def get_source_datasets_meta_info(self):
# return self.__source_datasets_meta_info
# def get_source_datasets_name(self):
# return list(self.__source_datasets.keys())
# def get_merged_source_dataset(self, split):
# source_train_datasets = {n: d[split] for n, d in self.__source_datasets.items()}
# return MergedDataset(list(source_train_datasets.values()))
# def get_source_datasets(self, split):
# source_train_datasets = {n: d[split] for n, d in self.__source_datasets.items()}
# return source_train_datasets
# # 3. target **domain**
# # (do we need such API `get_ith_target_domain()`?)
# def get_target_domains_meta_info(self):
# return self.__source_datasets_meta_info
# def get_target_domains_order(self):
# return self.__target_domains_order
# def get_corr_source_datasets_name_of_target_domain(self, target_domain_name):
# return self.__target_source_map[target_domain_name]
# def get_limited_target_train_dataset(self):
# if len(self.__target_domains_order) > 1:
# raise RuntimeError('this API is only for pass-in scenario in user-defined online DA algorithm')
# return list(self.__target_datasets.values())[0]['train']
# def get_target_domains_iterator(self, split):
# for target_domain_index, target_domain_name in enumerate(self.__target_domains_order):
# target_dataset = self.__target_datasets[target_domain_name]
# target_domain_meta_info = self.__target_datasets_meta_info[target_domain_name]
# yield target_domain_index, target_domain_name, target_dataset[split], target_domain_meta_info
# # 4. permission management
# def get_sub_scenario(self, source_datasets_name, source_splits, target_domains_order, target_splits):
# def get_split(dataset, splits):
# res = {}
# for s, d in dataset.items():
# if s in splits:
# res[s] = d
# return res
# return Scenario(
# config=self.__config,
# source_datasets_meta_info={k: v for k, v in self.__source_datasets_meta_info.items() if k in source_datasets_name},
# target_datasets_meta_info={k: v for k, v in self.__target_datasets_meta_info.items() if k in target_domains_order},
# target_source_map={k: v for k, v in self.__target_source_map.items() if k in target_domains_order},
# target_domains_order=target_domains_order,
# source_datasets={k: get_split(v, source_splits) for k, v in self.__source_datasets.items() if k in source_datasets_name},
# target_datasets={k: get_split(v, target_splits) for k, v in self.__target_datasets.items() if k in target_domains_order}
# )
# def get_only_source_sub_scenario_for_exp_tracker(self):
# return self.get_sub_scenario(self.get_source_datasets_name(), ['train', 'val', 'test'], [], [])
# def get_only_source_sub_scenario_for_alg(self):
# return self.get_sub_scenario(self.get_source_datasets_name(), ['train'], [], [])
# def get_one_da_sub_scenario_for_alg(self, target_domain_name):
# return self.get_sub_scenario(self.get_corr_source_datasets_name_of_target_domain(target_domain_name),
# ['train', 'val'], [target_domain_name], ['train'])
# class Scenario:
# def __init__(self, config,
# offline_source_datasets_meta_info: Dict[str, DatasetMetaInfo],
# offline_source_datasets: Dict[str, ABDataset],
# online_datasets_meta_info: List[Tuple[Dict[str, DatasetMetaInfo], DatasetMetaInfo]],
# online_datasets: Dict[str, ABDataset],
# target_domains_order: List[str],
# target_source_map: Dict[str, Dict[str, str]],
# num_classes: int):
# self.config = config
# self.offline_source_datasets_meta_info = offline_source_datasets_meta_info
# self.offline_source_datasets = offline_source_datasets
# self.online_datasets_meta_info = online_datasets_meta_info
# self.online_datasets = online_datasets
# self.target_domains_order = target_domains_order
# self.target_source_map = target_source_map
# self.num_classes = num_classes
# def get_offline_source_datasets(self, split):
# return {n: d[split] for n, d in self.offline_source_datasets.items()}
# def get_offline_source_merged_dataset(self, split):
# return MergedDataset([d[split] for d in self.offline_source_datasets.values()])
# def get_online_current_corresponding_source_datasets(self, domain_index, split):
# cur_target_domain_name = self.target_domains_order[domain_index]
# cur_source_datasets_name = list(self.target_source_map[cur_target_domain_name].keys())
# cur_source_datasets = {n: self.online_datasets[n + '|' + cur_target_domain_name][split] for n in cur_source_datasets_name}
# return cur_source_datasets
# def get_online_current_corresponding_merged_source_dataset(self, domain_index, split):
# cur_target_domain_name = self.target_domains_order[domain_index]
# cur_source_datasets_name = list(self.target_source_map[cur_target_domain_name].keys())
# cur_source_datasets = {n: self.online_datasets[n + '|' + cur_target_domain_name][split] for n in cur_source_datasets_name}
# return MergedDataset([d for d in cur_source_datasets.values()])
# def get_online_current_target_dataset(self, domain_index, split):
# cur_target_domain_name = self.target_domains_order[domain_index]
# return self.online_datasets[cur_target_domain_name][split]
# def build_dataloader(self, dataset: ABDataset, batch_size: int, num_workers: int,
# infinite: bool, shuffle_when_finite: bool, to_iterator: bool):
# if infinite:
# dataloader = InfiniteDataLoader(
# dataset, None, batch_size, num_workers=num_workers)
# else:
# dataloader = FastDataLoader(
# dataset, batch_size, num_workers, shuffle=shuffle_when_finite)
# if to_iterator:
# dataloader = iter(dataloader)
# return dataloader
# def build_sub_dataset(self, dataset: ABDataset, indexes: List[int]):
# from data.datasets.dataset_split import _SplitDataset
# dataset.dataset = _SplitDataset(dataset.dataset, indexes)
# return dataset
# def build_index_returned_dataset(self, dataset: ABDataset):
# return IndexReturnedDataset(dataset)
# def get_config(self):
# return copy.deepcopy(self.config)
# def get_task_type(self):
# return list(self.online_datasets.values())[0]['train'].task_type
# def get_num_classes(self):
# return self.num_classes
class Scenario:
def __init__(self, config, all_datasets_ignore_classes_map, all_datasets_idx_map, target_domains_order, target_source_map,
all_datasets_e2e_class_to_idx_map,
num_classes):
self.config = config
self.all_datasets_ignore_classes_map = all_datasets_ignore_classes_map
self.all_datasets_idx_map = all_datasets_idx_map
self.target_domains_order = target_domains_order
self.target_source_map = target_source_map
self.all_datasets_e2e_class_to_idx_map = all_datasets_e2e_class_to_idx_map
self.num_classes = num_classes
self.cur_domain_index = 0
logger.info(f'[scenario build] # classes: {num_classes}')
logger.debug(f'[scenario build] idx map: {all_datasets_idx_map}')
def to_json(self):
return dict(
config=self.config, all_datasets_ignore_classes_map=self.all_datasets_ignore_classes_map,
all_datasets_idx_map=self.all_datasets_idx_map, target_domains_order=self.target_domains_order,
target_source_map=self.target_source_map,
all_datasets_e2e_class_to_idx_map=self.all_datasets_e2e_class_to_idx_map,
num_classes=self.num_classes
)
def __str__(self):
return f'Scenario({self.to_json()})'
def get_offline_datasets(self, transform=None):
# make source datasets which contains all unioned classes
res_offline_train_source_datasets_map = {}
from .. import get_dataset
data_dirs = self.config['data_dirs']
source_datasets_name = self.config['source_datasets_name']
# ori_datasets_map = {d: get_dataset(d, data_dirs[d], None, None, None, None) for d in source_datasets_name}
# res_source_datasets_map = {k: {split: train_val_split(copy.deepcopy(v), split, rate=0.97) for split in ['train', 'val']} for k, v in ori_datasets_map.items()}
# for ds in res_source_datasets_map.values():
# for k, v in ds.items():
# v.underlying_dataset.dataset.setSplit(k)
res_source_datasets_map = {d: {split: get_dataset(d, data_dirs[d], split,
transform,
self.all_datasets_ignore_classes_map[d], self.all_datasets_idx_map[d])
for split in ['train', 'val', 'test']}
for d in self.all_datasets_ignore_classes_map.keys() if d in source_datasets_name}
# for source_dataset_name in self.config['source_datasets_name']:
# source_datasets = [v for k, v in res_source_datasets_map.items() if source_dataset_name in k]
# # how to merge idx map?
# # 35 79 97
# idx_maps = [d['train'].idx_map for d in source_datasets]
# ignore_classes_list = [d['train'].ignore_classes for d in source_datasets]
# union_idx_map = {}
# for idx_map in idx_maps:
# for k, v in idx_map.items():
# if k not in union_idx_map:
# union_idx_map[k] = v
# else:
# assert union_idx_map[k] == v
# union_ignore_classes = reduce(lambda res, cur: res & set(cur), ignore_classes_list, set(ignore_classes_list[0]))
# assert len(union_ignore_classes) + len(union_idx_map) == len(source_datasets[0]['train'].raw_classes)
# logger.info(f'[scenario build] {source_dataset_name} has {len(union_idx_map)} classes in offline training')
# d = source_dataset_name
# res_offline_train_source_datasets_map[d] = {split: get_dataset(d, data_dirs[d], split,
# transform,
# union_ignore_classes, union_idx_map)
# for split in ['train', 'val', 'test']}
return res_source_datasets_map
def get_offline_datasets_args(self):
# make source datasets which contains all unioned classes
res_offline_train_source_datasets_map = {}
from .. import get_dataset
data_dirs = self.config['data_dirs']
source_datasets_name = self.config['source_datasets_name']
res_source_datasets_map = {d: {split: get_dataset(d.split('|')[0], data_dirs[d.split('|')[0]], split,
None,
self.all_datasets_ignore_classes_map[d], self.all_datasets_idx_map[d])
for split in ['train', 'val', 'test']}
for d in self.all_datasets_ignore_classes_map.keys() if d.split('|')[0] in source_datasets_name}
for source_dataset_name in self.config['source_datasets_name']:
source_datasets = [v for k, v in res_source_datasets_map.items() if source_dataset_name in k]
# how to merge idx map?
# 35 79 97
idx_maps = [d['train'].idx_map for d in source_datasets]
ignore_classes_list = [d['train'].ignore_classes for d in source_datasets]
union_idx_map = {}
for idx_map in idx_maps:
for k, v in idx_map.items():
if k not in union_idx_map:
union_idx_map[k] = v
else:
assert union_idx_map[k] == v
union_ignore_classes = reduce(lambda res, cur: res & set(cur), ignore_classes_list, set(ignore_classes_list[0]))
assert len(union_ignore_classes) + len(union_idx_map) == len(source_datasets[0]['train'].raw_classes)
logger.info(f'[scenario build] {source_dataset_name} has {len(union_idx_map)} classes in offline training')
d = source_dataset_name
res_offline_train_source_datasets_map[d] = {split: dict(d, data_dirs[d], split,
None,
union_ignore_classes, union_idx_map)
for split in ['train', 'val', 'test']}
return res_offline_train_source_datasets_map
# for d in source_datasets_name:
# source_dataset_with_max_num_classes = None
# for ed_name, ed in res_source_datasets_map.items():
# if not ed_name.startswith(d):
# continue
# if source_dataset_with_max_num_classes is None:
# source_dataset_with_max_num_classes = ed
# res_offline_train_source_datasets_map_names[d] = ed_name
# if len(ed['train'].ignore_classes) < len(source_dataset_with_max_num_classes['train'].ignore_classes):
# source_dataset_with_max_num_classes = ed
# res_offline_train_source_datasets_map_names[d] = ed_name
# res_offline_train_source_datasets_map[d] = source_dataset_with_max_num_classes
# return res_offline_train_source_datasets_map
def get_online_ith_domain_datasets_args_for_inference(self, domain_index):
target_dataset_name = self.target_domains_order[domain_index]
# dataset_name: Any, root_dir: Any, split: Any, transform: Any | None = None, ignore_classes: Any = [], idx_map: Any | None = None
if 'MM-CityscapesDet' in self.target_domains_order or 'CityscapesDet' in self.target_domains_order or 'BaiduPersonDet' in self.target_domains_order:
logger.info(f'use val split for inference test (only Det workload)')
split = 'test'
else:
split = 'train'
return dict(dataset_name=target_dataset_name,
root_dir=self.config['data_dirs'][target_dataset_name],
split=split,
transform=None,
ignore_classes=self.all_datasets_ignore_classes_map[target_dataset_name],
idx_map=self.all_datasets_idx_map[target_dataset_name])
def get_online_ith_domain_datasets_args_for_training(self, domain_index):
target_dataset_name = self.target_domains_order[domain_index]
source_datasets_name = list(self.target_source_map[target_dataset_name].keys())
res = {}
# dataset_name: Any, root_dir: Any, split: Any, transform: Any | None = None, ignore_classes: Any = [], idx_map: Any | None = None
res[target_dataset_name] = {split: dict(dataset_name=target_dataset_name,
root_dir=self.config['data_dirs'][target_dataset_name],
split=split,
transform=None,
ignore_classes=self.all_datasets_ignore_classes_map[target_dataset_name],
idx_map=self.all_datasets_idx_map[target_dataset_name]) for split in ['train', 'val']}
for d in source_datasets_name:
res[d] = {split: dict(dataset_name=d,
root_dir=self.config['data_dirs'][d],
split=split,
transform=None,
ignore_classes=self.all_datasets_ignore_classes_map[d + '|' + target_dataset_name],
idx_map=self.all_datasets_idx_map[d + '|' + target_dataset_name]) for split in ['train', 'val']}
return res
def get_online_cur_domain_datasets_args_for_inference(self):
return self.get_online_ith_domain_datasets_args_for_inference(self.cur_domain_index)
def get_online_cur_domain_datasets_args_for_training(self):
return self.get_online_ith_domain_datasets_args_for_training(self.cur_domain_index)
def get_online_cur_domain_datasets_for_training(self, transform=None):
res = {}
datasets_args = self.get_online_ith_domain_datasets_args_for_training(self.cur_domain_index)
for dataset_name, dataset_args in datasets_args.items():
res[dataset_name] = {}
for split, args in dataset_args.items():
if transform is not None:
args['transform'] = transform
dataset = get_dataset(**args)
res[dataset_name][split] = dataset
return res
def get_online_cur_domain_datasets_for_inference(self, transform=None):
datasets_args = self.get_online_ith_domain_datasets_args_for_inference(self.cur_domain_index)
if transform is not None:
datasets_args['transform'] = transform
return get_dataset(**datasets_args)
def get_online_cur_domain_samples_for_training(self, num_samples, transform=None, collate_fn=None):
dataset = self.get_online_cur_domain_datasets_for_training(transform=transform)
dataset = dataset[self.target_domains_order[self.cur_domain_index]]['train']
return next(iter(build_dataloader(dataset, num_samples, 0, True, None, collate_fn=collate_fn)))[0]
def next_domain(self):
self.cur_domain_index += 1
|