KyanChen's picture
Upload 1861 files
3b96cb1
raw
history blame
5.12 kB
# Copyright (c) OpenMMLab. All rights reserved.
import argparse
import os.path as osp
import nibabel as nib
import numpy as np
from mmengine.utils import mkdir_or_exist
from PIL import Image
def read_files_from_txt(txt_path):
with open(txt_path) as f:
files = f.readlines()
files = [file.strip() for file in files]
return files
def read_nii_file(nii_path):
img = nib.load(nii_path).get_fdata()
return img
def split_3d_image(img):
c, _, _ = img.shape
res = []
for i in range(c):
res.append(img[i, :, :])
return res
def label_mapping(label):
"""Label mapping from TransUNet paper setting. It only has 9 classes, which
are 'background', 'aorta', 'gallbladder', 'left_kidney', 'right_kidney',
'liver', 'pancreas', 'spleen', 'stomach', respectively. Other foreground
classes in original dataset are all set to background.
More details could be found here: https://arxiv.org/abs/2102.04306
"""
maped_label = np.zeros_like(label)
maped_label[label == 8] = 1
maped_label[label == 4] = 2
maped_label[label == 3] = 3
maped_label[label == 2] = 4
maped_label[label == 6] = 5
maped_label[label == 11] = 6
maped_label[label == 1] = 7
maped_label[label == 7] = 8
return maped_label
def pares_args():
parser = argparse.ArgumentParser(
description='Convert synapse dataset to mmsegmentation format')
parser.add_argument(
'--dataset-path', type=str, help='synapse dataset path.')
parser.add_argument(
'--save-path',
default='data/synapse',
type=str,
help='save path of the dataset.')
args = parser.parse_args()
return args
def main():
args = pares_args()
dataset_path = args.dataset_path
save_path = args.save_path
if not osp.exists(dataset_path):
raise ValueError('The dataset path does not exist. '
'Please enter a correct dataset path.')
if not osp.exists(osp.join(dataset_path, 'img')) \
or not osp.exists(osp.join(dataset_path, 'label')):
raise FileNotFoundError('The dataset structure is incorrect. '
'Please check your dataset.')
train_id = read_files_from_txt(osp.join(dataset_path, 'train.txt'))
train_id = [idx[3:7] for idx in train_id]
test_id = read_files_from_txt(osp.join(dataset_path, 'val.txt'))
test_id = [idx[3:7] for idx in test_id]
mkdir_or_exist(osp.join(save_path, 'img_dir/train'))
mkdir_or_exist(osp.join(save_path, 'img_dir/val'))
mkdir_or_exist(osp.join(save_path, 'ann_dir/train'))
mkdir_or_exist(osp.join(save_path, 'ann_dir/val'))
# It follows data preparation pipeline from here:
# https://github.com/Beckschen/TransUNet/tree/main/datasets
for i, idx in enumerate(train_id):
img_3d = read_nii_file(
osp.join(dataset_path, 'img', 'img' + idx + '.nii.gz'))
label_3d = read_nii_file(
osp.join(dataset_path, 'label', 'label' + idx + '.nii.gz'))
img_3d = np.clip(img_3d, -125, 275)
img_3d = (img_3d + 125) / 400
img_3d *= 255
img_3d = np.transpose(img_3d, [2, 0, 1])
img_3d = np.flip(img_3d, 2)
label_3d = np.transpose(label_3d, [2, 0, 1])
label_3d = np.flip(label_3d, 2)
label_3d = label_mapping(label_3d)
for c in range(img_3d.shape[0]):
img = img_3d[c]
label = label_3d[c]
img = Image.fromarray(img).convert('RGB')
label = Image.fromarray(label).convert('L')
img.save(
osp.join(
save_path, 'img_dir/train', 'case' + idx.zfill(4) +
'_slice' + str(c).zfill(3) + '.jpg'))
label.save(
osp.join(
save_path, 'ann_dir/train', 'case' + idx.zfill(4) +
'_slice' + str(c).zfill(3) + '.png'))
for i, idx in enumerate(test_id):
img_3d = read_nii_file(
osp.join(dataset_path, 'img', 'img' + idx + '.nii.gz'))
label_3d = read_nii_file(
osp.join(dataset_path, 'label', 'label' + idx + '.nii.gz'))
img_3d = np.clip(img_3d, -125, 275)
img_3d = (img_3d + 125) / 400
img_3d *= 255
img_3d = np.transpose(img_3d, [2, 0, 1])
img_3d = np.flip(img_3d, 2)
label_3d = np.transpose(label_3d, [2, 0, 1])
label_3d = np.flip(label_3d, 2)
label_3d = label_mapping(label_3d)
for c in range(img_3d.shape[0]):
img = img_3d[c]
label = label_3d[c]
img = Image.fromarray(img).convert('RGB')
label = Image.fromarray(label).convert('L')
img.save(
osp.join(
save_path, 'img_dir/val', 'case' + idx.zfill(4) +
'_slice' + str(c).zfill(3) + '.jpg'))
label.save(
osp.join(
save_path, 'ann_dir/val', 'case' + idx.zfill(4) +
'_slice' + str(c).zfill(3) + '.png'))
if __name__ == '__main__':
main()