File size: 5,122 Bytes
3b96cb1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
# Copyright (c) OpenMMLab. All rights reserved.
import argparse
import os.path as osp

import nibabel as nib
import numpy as np
from mmengine.utils import mkdir_or_exist
from PIL import Image


def read_files_from_txt(txt_path):
    with open(txt_path) as f:
        files = f.readlines()
    files = [file.strip() for file in files]
    return files


def read_nii_file(nii_path):
    img = nib.load(nii_path).get_fdata()
    return img


def split_3d_image(img):
    c, _, _ = img.shape
    res = []
    for i in range(c):
        res.append(img[i, :, :])
    return res


def label_mapping(label):
    """Label mapping from TransUNet paper setting. It only has 9 classes, which
    are 'background', 'aorta', 'gallbladder', 'left_kidney', 'right_kidney',
    'liver', 'pancreas', 'spleen', 'stomach', respectively. Other foreground
    classes in original dataset are all set to background.

    More details could be found here: https://arxiv.org/abs/2102.04306
    """
    maped_label = np.zeros_like(label)
    maped_label[label == 8] = 1
    maped_label[label == 4] = 2
    maped_label[label == 3] = 3
    maped_label[label == 2] = 4
    maped_label[label == 6] = 5
    maped_label[label == 11] = 6
    maped_label[label == 1] = 7
    maped_label[label == 7] = 8
    return maped_label


def pares_args():
    parser = argparse.ArgumentParser(
        description='Convert synapse dataset to mmsegmentation format')
    parser.add_argument(
        '--dataset-path', type=str, help='synapse dataset path.')
    parser.add_argument(
        '--save-path',
        default='data/synapse',
        type=str,
        help='save path of the dataset.')
    args = parser.parse_args()
    return args


def main():
    args = pares_args()
    dataset_path = args.dataset_path
    save_path = args.save_path

    if not osp.exists(dataset_path):
        raise ValueError('The dataset path does not exist. '
                         'Please enter a correct dataset path.')
    if not osp.exists(osp.join(dataset_path, 'img')) \
            or not osp.exists(osp.join(dataset_path, 'label')):
        raise FileNotFoundError('The dataset structure is incorrect. '
                                'Please check your dataset.')

    train_id = read_files_from_txt(osp.join(dataset_path, 'train.txt'))
    train_id = [idx[3:7] for idx in train_id]

    test_id = read_files_from_txt(osp.join(dataset_path, 'val.txt'))
    test_id = [idx[3:7] for idx in test_id]

    mkdir_or_exist(osp.join(save_path, 'img_dir/train'))
    mkdir_or_exist(osp.join(save_path, 'img_dir/val'))
    mkdir_or_exist(osp.join(save_path, 'ann_dir/train'))
    mkdir_or_exist(osp.join(save_path, 'ann_dir/val'))

    # It follows data preparation pipeline from here:
    # https://github.com/Beckschen/TransUNet/tree/main/datasets
    for i, idx in enumerate(train_id):
        img_3d = read_nii_file(
            osp.join(dataset_path, 'img', 'img' + idx + '.nii.gz'))
        label_3d = read_nii_file(
            osp.join(dataset_path, 'label', 'label' + idx + '.nii.gz'))

        img_3d = np.clip(img_3d, -125, 275)
        img_3d = (img_3d + 125) / 400
        img_3d *= 255
        img_3d = np.transpose(img_3d, [2, 0, 1])
        img_3d = np.flip(img_3d, 2)

        label_3d = np.transpose(label_3d, [2, 0, 1])
        label_3d = np.flip(label_3d, 2)
        label_3d = label_mapping(label_3d)

        for c in range(img_3d.shape[0]):
            img = img_3d[c]
            label = label_3d[c]

            img = Image.fromarray(img).convert('RGB')
            label = Image.fromarray(label).convert('L')
            img.save(
                osp.join(
                    save_path, 'img_dir/train', 'case' + idx.zfill(4) +
                    '_slice' + str(c).zfill(3) + '.jpg'))
            label.save(
                osp.join(
                    save_path, 'ann_dir/train', 'case' + idx.zfill(4) +
                    '_slice' + str(c).zfill(3) + '.png'))

    for i, idx in enumerate(test_id):
        img_3d = read_nii_file(
            osp.join(dataset_path, 'img', 'img' + idx + '.nii.gz'))
        label_3d = read_nii_file(
            osp.join(dataset_path, 'label', 'label' + idx + '.nii.gz'))

        img_3d = np.clip(img_3d, -125, 275)
        img_3d = (img_3d + 125) / 400
        img_3d *= 255
        img_3d = np.transpose(img_3d, [2, 0, 1])
        img_3d = np.flip(img_3d, 2)

        label_3d = np.transpose(label_3d, [2, 0, 1])
        label_3d = np.flip(label_3d, 2)
        label_3d = label_mapping(label_3d)

        for c in range(img_3d.shape[0]):
            img = img_3d[c]
            label = label_3d[c]

            img = Image.fromarray(img).convert('RGB')
            label = Image.fromarray(label).convert('L')
            img.save(
                osp.join(
                    save_path, 'img_dir/val', 'case' + idx.zfill(4) +
                    '_slice' + str(c).zfill(3) + '.jpg'))
            label.save(
                osp.join(
                    save_path, 'ann_dir/val', 'case' + idx.zfill(4) +
                    '_slice' + str(c).zfill(3) + '.png'))


if __name__ == '__main__':
    main()