File size: 1,633 Bytes
b2410a1
 
c03a470
3376c8f
c03a470
3376c8f
 
 
b2410a1
c03a470
3376c8f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c03a470
3376c8f
 
 
 
c03a470
3376c8f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ae6739d
b2410a1
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
import gradio as gr

import os
import torch
from dotenv import load_dotenv
from datasets import load_dataset
from peft import AutoPeftModelForCausalLM
from transformers import AutoTokenizer, AutoModelForCausalLM

load_dotenv()

def format_instruction(report):
    return """### Instruction: 
Classify the student into Placed/NotPlaced based on his/her college report details. The report includes marks scored by the student in various courses and extra curricular activities taken by them.

### Report:
{report}

### Label:
"""

def postprocess(outputs, tokenizer, prompt):
    outputs = outputs.numpy()
    outputs = tokenizer.batch_decode(outputs, skip_special_tokens=True)
    output = outputs[0][len(prompt):]
    
    return output


def run_model(report):
    # load dataset and select a random sample
    prompt = format_instruction(report)

    # load base LLM model, LoRA params and tokenizer
    model = AutoPeftModelForCausalLM.from_pretrained(
        os.getenv('Model_Repo_ID'),
        low_cpu_mem_usage=True,
        torch_dtype=torch.float16,
        load_in_4bit=True,
    )
    tokenizer = AutoTokenizer.from_pretrained(os.getenv('Model_Repo_ID'))
    input_ids = tokenizer(prompt, return_tensors="pt", truncation=True).input_ids.cpu()
    
    # inference
    with torch.inference_mode():
        outputs = model.generate(
            input_ids=input_ids, 
            max_new_tokens=800, 
            do_sample=True, 
            top_p=0.9,
            temperature=0.9
        )

    return postprocess(outputs, tokenizer, report)


iface = gr.Interface(fn=run_model, inputs="text", outputs="text")
iface.launch()