Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,7 +1,55 @@
|
|
1 |
import gradio as gr
|
2 |
|
3 |
-
|
4 |
-
|
|
|
|
|
5 |
|
6 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
iface.launch()
|
|
|
1 |
import gradio as gr
|
2 |
|
3 |
+
import torch
|
4 |
+
from datasets import load_dataset
|
5 |
+
from peft import AutoPeftModelForCausalLM
|
6 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
7 |
|
8 |
+
|
9 |
+
def format_instruction(report):
|
10 |
+
return """### Instruction:
|
11 |
+
Classify the student into Placed/NotPlaced based on his/her college report details. The report includes marks scored by the student in various courses and extra curricular activities taken by them.
|
12 |
+
|
13 |
+
### Report:
|
14 |
+
{report}
|
15 |
+
|
16 |
+
### Label:
|
17 |
+
"""
|
18 |
+
|
19 |
+
def postprocess(outputs, tokenizer, prompt):
|
20 |
+
outputs = outputs.numpy()
|
21 |
+
outputs = tokenizer.batch_decode(outputs, skip_special_tokens=True)
|
22 |
+
output = outputs[0][len(prompt):]
|
23 |
+
|
24 |
+
return output
|
25 |
+
|
26 |
+
|
27 |
+
def run_model(report):
|
28 |
+
# load dataset and select a random sample
|
29 |
+
prompt = format_instruction(report)
|
30 |
+
|
31 |
+
# load base LLM model, LoRA params and tokenizer
|
32 |
+
model = AutoPeftModelForCausalLM.from_pretrained(
|
33 |
+
Model_Repo_ID,
|
34 |
+
low_cpu_mem_usage=True,
|
35 |
+
torch_dtype=torch.float16,
|
36 |
+
load_in_4bit=True,
|
37 |
+
)
|
38 |
+
tokenizer = AutoTokenizer.from_pretrained(Model_Repo_ID)
|
39 |
+
input_ids = tokenizer(prompt, return_tensors="pt", truncation=True).input_ids.cpu()
|
40 |
+
|
41 |
+
# inference
|
42 |
+
with torch.inference_mode():
|
43 |
+
outputs = model.generate(
|
44 |
+
input_ids=input_ids,
|
45 |
+
max_new_tokens=800,
|
46 |
+
do_sample=True,
|
47 |
+
top_p=0.9,
|
48 |
+
temperature=0.9
|
49 |
+
)
|
50 |
+
|
51 |
+
return postprocess(outputs, tokenizer, report)
|
52 |
+
|
53 |
+
|
54 |
+
iface = gr.Interface(fn=run_model, students_report="text", Status="text")
|
55 |
iface.launch()
|