KingNish commited on
Commit
a4c2f04
·
verified ·
1 Parent(s): 9c58a35

Update chatbot.py

Browse files
Files changed (1) hide show
  1. chatbot.py +4 -6
chatbot.py CHANGED
@@ -25,7 +25,7 @@ import cv2
25
  import re
26
  import io # Add this import for working with image bytes
27
 
28
- model_id = "llava-hf/llava-interleave-qwen-7b-hf"
29
  processor = LlavaProcessor.from_pretrained(model_id)
30
  model = LlavaForConditionalGeneration.from_pretrained(model_id, torch_dtype=torch.float16, use_flash_attention_2=True, low_cpu_mem_usage=True)
31
  model.to("cuda")
@@ -67,7 +67,7 @@ EXAMPLES = [
67
  ],
68
  [
69
  {
70
- "text": "Identify two famous people in the modern world.",
71
  "files": [f"{examples_path}/example_images/elon_smoking.jpg",
72
  f"{examples_path}/example_images/steve_jobs.jpg", ]
73
  }
@@ -116,10 +116,8 @@ BOT_AVATAR = "OpenAI_logo.png"
116
  def extract_text_from_webpage(html_content):
117
  """Extracts visible text from HTML content using BeautifulSoup."""
118
  soup = BeautifulSoup(html_content, "html.parser")
119
- # Remove unwanted tags
120
  for tag in soup(["script", "style", "header", "footer", "nav", "form", "svg"]):
121
  tag.extract()
122
- # Get the remaining visible text
123
  visible_text = soup.get_text(strip=True)
124
  return visible_text
125
 
@@ -194,7 +192,7 @@ client_mixtral = InferenceClient("NousResearch/Nous-Hermes-2-Mixtral-8x7B-DPO")
194
  client_mistral = InferenceClient("mistralai/Mistral-7B-Instruct-v0.3")
195
  generate_kwargs = dict( max_new_tokens=4000, do_sample=True, stream=True, details=True, return_full_text=False )
196
 
197
- system_llava = "<|im_start|>system\nYou are OpenGPT 4o, an exceptionally capable and versatile AI assistant meticulously crafted by KingNish. Your task is to fulfill users query in best possible way. <|im_end|>"
198
 
199
  @spaces.GPU(duration=30, queue=False)
200
  def model_inference(
@@ -278,7 +276,7 @@ def model_inference(
278
 
279
  inputs = processor(prompt, image, return_tensors="pt").to("cuda", torch.float16)
280
  streamer = TextIteratorStreamer(processor, **{"skip_special_tokens": True})
281
- generation_kwargs = dict(inputs, streamer=streamer, max_new_tokens=1024)
282
  generated_text = ""
283
 
284
  thread = Thread(target=model.generate, kwargs=generation_kwargs)
 
25
  import re
26
  import io # Add this import for working with image bytes
27
 
28
+ model_id = "llava-hf/llava-interleave-qwen-7b-dpo-hf"
29
  processor = LlavaProcessor.from_pretrained(model_id)
30
  model = LlavaForConditionalGeneration.from_pretrained(model_id, torch_dtype=torch.float16, use_flash_attention_2=True, low_cpu_mem_usage=True)
31
  model.to("cuda")
 
67
  ],
68
  [
69
  {
70
+ "text": "Who are they? Tell me about both of them",
71
  "files": [f"{examples_path}/example_images/elon_smoking.jpg",
72
  f"{examples_path}/example_images/steve_jobs.jpg", ]
73
  }
 
116
  def extract_text_from_webpage(html_content):
117
  """Extracts visible text from HTML content using BeautifulSoup."""
118
  soup = BeautifulSoup(html_content, "html.parser")
 
119
  for tag in soup(["script", "style", "header", "footer", "nav", "form", "svg"]):
120
  tag.extract()
 
121
  visible_text = soup.get_text(strip=True)
122
  return visible_text
123
 
 
192
  client_mistral = InferenceClient("mistralai/Mistral-7B-Instruct-v0.3")
193
  generate_kwargs = dict( max_new_tokens=4000, do_sample=True, stream=True, details=True, return_full_text=False )
194
 
195
+ system_llava = "<|im_start|>system\nYou are OpenGPT 4o, an exceptionally capable and versatile AI assistant meticulously crafted by KingNish. Your task is to fulfill users query in best possible way. You are provided with image, videos and 3d structures as input with question your task is to give best possible result and explaination to user.<|im_end|>"
196
 
197
  @spaces.GPU(duration=30, queue=False)
198
  def model_inference(
 
276
 
277
  inputs = processor(prompt, image, return_tensors="pt").to("cuda", torch.float16)
278
  streamer = TextIteratorStreamer(processor, **{"skip_special_tokens": True})
279
+ generation_kwargs = dict(inputs, streamer=streamer, max_new_tokens=2048)
280
  generated_text = ""
281
 
282
  thread = Thread(target=model.generate, kwargs=generation_kwargs)