runtime error
Exit code: 1. Reason: 09G [00:01<00:00, 968MB/s] Downloading shards: 100%|██████████| 5/5 [00:14<00:00, 2.55s/it][A Downloading shards: 100%|██████████| 5/5 [00:14<00:00, 2.93s/it] `Qwen2VLRotaryEmbedding` can now be fully parameterized by passing the model config through the `config` argument. All other arguments will be removed in v4.46 Loading checkpoint shards: 0%| | 0/5 [00:00<?, ?it/s][A Loading checkpoint shards: 20%|██ | 1/5 [00:01<00:06, 1.70s/it][A Loading checkpoint shards: 40%|████ | 2/5 [00:03<00:04, 1.58s/it][A Loading checkpoint shards: 60%|██████ | 3/5 [00:04<00:03, 1.52s/it][A Loading checkpoint shards: 80%|████████ | 4/5 [00:06<00:01, 1.52s/it][A Loading checkpoint shards: 100%|██████████| 5/5 [00:06<00:00, 1.33s/it] Traceback (most recent call last): File "/home/user/app/app.py", line 3, in <module> from chatbot import model_inference, EXAMPLES, chatbot File "/home/user/app/chatbot.py", line 30, in <module> model = Qwen2VLForConditionalGeneration.from_pretrained(MODEL_ID, trust_remote_code=True, torch_dtype=torch.float16).to("cuda").eval() File "/usr/local/lib/python3.10/site-packages/transformers/modeling_utils.py", line 4210, in from_pretrained ) = cls._load_pretrained_model( File "/usr/local/lib/python3.10/site-packages/transformers/modeling_utils.py", line 4833, in _load_pretrained_model raise RuntimeError(f"Error(s) in loading state_dict for {model.__class__.__name__}:\n\t{error_msg}") RuntimeError: Error(s) in loading state_dict for Qwen2VLForConditionalGeneration: size mismatch for visual.merger.mlp.2.weight: copying a param with shape (3584, 5120) from checkpoint, the shape in current model is (1280, 5120). size mismatch for visual.merger.mlp.2.bias: copying a param with shape (3584,) from checkpoint, the shape in current model is (1280,). You may consider adding `ignore_mismatched_sizes=True` in the model `from_pretrained` method.
Container logs:
Fetching error logs...