Spaces:
Running
on
Zero
Running
on
Zero
import re | |
import gradio as gr | |
from huggingface_hub import InferenceClient | |
client = InferenceClient("mistralai/Mixtral-8x7B-Instruct-v0.1") | |
system_instructions = """<s> [INST] You will be provided with text, and your task is to classify task tasks are (text generation, image generation, pdf chat, image text to text, image classification, summarization, translation , tts) """ | |
def classify_task(prompt): | |
generate_kwargs = dict( | |
temperature=0.5, | |
max_new_tokens=1024, | |
top_p=0.95, | |
repetition_penalty=1.0, | |
do_sample=True, | |
seed=42, | |
) | |
formatted_prompt = system_instructions + prompt + "[/INST]" | |
stream = client.text_generation( | |
formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=False) | |
output = "" | |
for response in stream: | |
output += response.token.text | |
# Define the classification function | |
def classify_task2(prompt): | |
# Here you would implement the logic to classify the prompt | |
# For example, using if-elif-else statements or a machine learning model | |
if 'generate text' in prompt.lower(): | |
return 'Text Generation' | |
elif 'generate image' in prompt.lower(): | |
return 'Image Generation' | |
elif 'pdf chat' in prompt.lower(): | |
return 'PDF Chat' | |
elif 'image to text' in prompt.lower(): | |
return 'Image Text to Text' | |
elif 'classify image' in prompt.lower(): | |
return 'Image Classification' | |
else: | |
return 'Unknown Task' | |
# Create the Gradio interface | |
with gr.Blocks() as demo: | |
gr.HTML(""" | |
<center><h1>Emoji Translator π€π»</h1> | |
<h3>Translate any text into emojis, and vice versa!</h3> | |
</center> | |
""") | |
gr.Markdown(""" | |
# Text to Emoji πβ‘οΈπ» | |
""") | |
with gr.Row(): | |
text_uesr_input = gr.Textbox(label="Enter text π") | |
output = gr.Textbox(label="Translation") | |
with gr.Row(): | |
translate_btn = gr.Button("Translate π") | |
translate_btn.click(fn=classify_task, inputs=text_uesr_input, | |
outputs=output, api_name="translate_text") | |
# Launch the app | |
if __name__ == "__main__": | |
demo.launch() | |