Spaces:
Running
on
Zero
Running
on
Zero
File size: 32,488 Bytes
07d03e7 fb74874 07d03e7 5b0f841 07d03e7 5b0f841 07d03e7 ebd7bc4 07d03e7 ed9ac19 c9ca579 de0f0d9 07d03e7 52811e4 07d03e7 efde43c de0f0d9 efde43c 5b0f841 de0f0d9 7e36853 5b0f841 0afabcf de0f0d9 5b0f841 de0f0d9 5b0f841 7e36853 5b0f841 7e36853 5b0f841 7e36853 de0f0d9 04d255b 07d03e7 5b0f841 a185be6 5b0f841 07d03e7 5b0f841 ed9ac19 5b0f841 52811e4 5b0f841 ed9ac19 383cfb9 5b0f841 a185be6 5b0f841 a185be6 ed9ac19 a185be6 ed9ac19 5b0f841 ed9ac19 a185be6 5b0f841 a185be6 383cfb9 5b0f841 47f07ad 07d03e7 5b0f841 a185be6 5b0f841 a185be6 383cfb9 07d03e7 a185be6 383cfb9 ae87863 ed9ac19 5b0f841 383cfb9 07d03e7 383cfb9 5b0f841 ed9ac19 07d03e7 ed9ac19 07d03e7 5b0f841 07d03e7 383cfb9 5b0f841 07d03e7 5b0f841 07d03e7 a185be6 07d03e7 5b0f841 07d03e7 52811e4 5b0f841 07d03e7 5b0f841 07d03e7 48006fa 07d03e7 5b0f841 ae87863 6c60f5f ae87863 6c60f5f ae87863 6c60f5f ae87863 6c60f5f 5b0f841 ae87863 6c60f5f ae87863 6c60f5f ae87863 6c60f5f ae87863 6c60f5f ae87863 5b0f841 ae87863 5b0f841 07d03e7 5b0f841 07d03e7 5b0f841 07d03e7 5b0f841 07d03e7 ebd7bc4 07d03e7 5b0f841 07d03e7 ebd7bc4 07d03e7 5b0f841 07d03e7 5b0f841 07d03e7 6c60f5f 07d03e7 ebd7bc4 07d03e7 5b0f841 07d03e7 5b0f841 07d03e7 ebd7bc4 07d03e7 5b0f841 07d03e7 5b0f841 07d03e7 5b0f841 0afabcf 07d03e7 5b0f841 07d03e7 5b0f841 07d03e7 5b0f841 07d03e7 5b0f841 07d03e7 5b0f841 07d03e7 06597e0 ae87863 06597e0 07d03e7 ae87863 07d03e7 06597e0 07d03e7 6c60f5f 07d03e7 f50b511 48006fa f50b511 ae87863 07d03e7 48006fa 07d03e7 ae87863 07d03e7 6c60f5f 07d03e7 5b0f841 07d03e7 ae87863 07d03e7 5b0f841 03f90e5 07d03e7 5b0f841 07d03e7 5b0f841 07d03e7 5b0f841 07d03e7 5b0f841 cb3cac3 07d03e7 5b0f841 07d03e7 ae87863 07d03e7 5b0f841 07d03e7 5b0f841 1bd41f9 5b0f841 1bd41f9 5b0f841 07d03e7 5b0f841 2965d28 5b0f841 1c0af73 efde43c de0f0d9 04d255b de0f0d9 f62245a 06597e0 cb3cac3 cd995bb 14e435a cc897a2 cb3cac3 80df0bc 06597e0 1c0af73 80df0bc 1c0af73 cd995bb 1c0af73 06597e0 de0f0d9 f50b511 1c0af73 07d03e7 cada336 48006fa |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 |
import os
import subprocess
import random
# Install flash attention, skipping CUDA build if necessary
subprocess.run(
"pip install flash-attn --no-build-isolation",
env={"FLASH_ATTENTION_SKIP_CUDA_BUILD": "TRUE"},
shell=True,
)
import requests
from bs4 import BeautifulSoup
# Import necessary libraries
import copy
import spaces
import time
import torch
from threading import Thread
from typing import List, Dict, Union
import urllib
import PIL.Image
import io
import datasets
from streaming_stt_nemo import Model as nemo
import gradio as gr
from transformers import TextIteratorStreamer
from transformers import Idefics2ForConditionalGeneration
import tempfile
from huggingface_hub import InferenceClient
import edge_tts
import asyncio
from transformers import pipeline
from transformers import AutoTokenizer, AutoModelForCausalLM
from transformers import AutoModel
from transformers import AutoProcessor
# Load pre-trained models for image captioning and language modeling
model3 = AutoModel.from_pretrained("unum-cloud/uform-gen2-dpo", trust_remote_code=True)
processor = AutoProcessor.from_pretrained("unum-cloud/uform-gen2-dpo", trust_remote_code=True)
# Define a function for image captioning
@spaces.GPU(queue=False)
def videochat(image3, prompt3):
# Process input image and prompt
inputs = processor(text=[prompt3], images=[image3], return_tensors="pt")
# Generate captions
with torch.inference_mode():
output = model3.generate(
**inputs,
do_sample=False,
use_cache=True,
max_new_tokens=256,
eos_token_id=151645,
pad_token_id=processor.tokenizer.pad_token_id
)
prompt_len = inputs["input_ids"].shape[1]
# Decode and return the generated captions
decoded_text = processor.batch_decode(output[:, prompt_len:])[0]
if decoded_text.endswith("<|im_end|>"):
decoded_text = decoded_text[:-10]
yield decoded_text
# Define Gradio theme
theme = gr.themes.Soft(
primary_hue="blue",
secondary_hue="orange",
neutral_hue="gray",
font=[gr.themes.GoogleFont('Libre Franklin'), gr.themes.GoogleFont('Public Sans'), 'system-ui', 'sans-serif']
).set(
body_background_fill_dark="#111111",
block_background_fill_dark="#111111",
block_border_width="1px",
block_title_background_fill_dark="#1e1c26",
input_background_fill_dark="#292733",
button_secondary_background_fill_dark="#24212b",
border_color_primary_dark="#343140",
background_fill_secondary_dark="#111111",
color_accent_soft_dark="transparent"
)
# Set default language for speech recognition
default_lang = "en"
# Initialize speech recognition engine
engines = {default_lang: nemo(default_lang)}
# Define a function for speech-to-text transcription
def transcribe(audio):
lang = "en"
model = engines[lang]
text = model.stt_file(audio)[0]
return text
# Get Hugging Face API token
HF_TOKEN = os.environ.get("HF_TOKEN", None)
# Define a function to get the appropriate InferenceClient based on model name
def client_fn(model):
if "Nous" in model:
return InferenceClient("NousResearch/Nous-Hermes-2-Mixtral-8x7B-DPO")
elif "Star" in model:
return InferenceClient("HuggingFaceH4/starchat2-15b-v0.1")
elif "Mistral" in model:
return InferenceClient("mistralai/Mistral-7B-Instruct-v0.3")
elif "Phi" in model:
return InferenceClient("microsoft/Phi-3-mini-4k-instruct")
elif "Zephyr" in model:
return InferenceClient("HuggingFaceH4/zephyr-7b-beta")
else:
return InferenceClient("mistralai/Mixtral-8x7B-Instruct-v0.1")
# Define a function to generate a random seed
def randomize_seed_fn(seed: int) -> int:
seed = random.randint(0, 999999)
return seed
# System instructions for the language model
system_instructions1 = "[SYSTEM] Answer as Real OpenGPT 4o, Made by 'KingNish', Keep conversation very short, clear, friendly and concise. The text provided is a request for a specific type of response from you, the virtual assistant. You will avoid introductions and start answering the query directly, elaborating on all aspects of the request. As an AI-powered assistant, your task is to generate responses that appear as if they are created by the user and not an AI-powered assistant. [USER]"
# Define a function for language modeling
def models(text, model="Mixtral 8x7B", seed=42):
seed = int(randomize_seed_fn(seed))
generator = torch.Generator().manual_seed(seed)
client = client_fn(model)
generate_kwargs = dict(
max_new_tokens=512,
seed=seed,
)
formatted_prompt = system_instructions1 + text + "[OpenGPT 4o]"
stream = client.text_generation(
formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=False
)
output = ""
for response in stream:
if not response.token.text == "</s>":
output += response.token.text
return output
# Define an asynchronous function to handle voice input and generate responses
async def respond(audio, model, seed):
user = transcribe(audio)
reply = models(user, model, seed)
communicate = edge_tts.Communicate(reply)
# Save the generated speech to a temporary file
with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as tmp_file:
tmp_path = tmp_file.name
await communicate.save(tmp_path)
yield tmp_path
# Set device to CUDA if available, otherwise CPU
DEVICE = torch.device("cuda")
# Load pre-trained models for image-based chat
MODELS = {
"idefics2-8b-chatty": Idefics2ForConditionalGeneration.from_pretrained(
"HuggingFaceM4/idefics2-8b-chatty",
torch_dtype=torch.float16,
_attn_implementation="flash_attention_2",
).to(DEVICE),
}
# Load pre-trained processor for image-based chat
PROCESSOR = AutoProcessor.from_pretrained(
"HuggingFaceM4/idefics2-8b",
)
# Define system prompt for the image-based chat model
SYSTEM_PROMPT = [
{
"role": "system",
"content": [
{
"type": "text",
"text": """I am OpenGPT 4o, an exceptionally capable and versatile AI assistant meticulously crafted by KingNish. Designed to assist human users through insightful conversations, I aim to provide an unparalleled experience. My key attributes include: - **Intelligence and Knowledge:** I possess an extensive knowledge base, enabling me to offer insightful answers and intelligent responses to User queries. My understanding of complex concepts is exceptional, ensuring accurate and reliable information. - **Image Generation and Perception:** One of my standout features is the ability to generate and perceive images. Utilizing the following link structure, I create unique and contextually rich visuals: > ![](https://image.pollinations.ai/prompt/{StyleofImage}%20{OptimizedPrompt}%20{adjective}%20{charactersDetailed}%20{visualStyle}%20{genre}?width={width}&height={height}&nologo=poll&nofeed=yes&seed={random})For image generation, I replace {info inside curly braces} with specific details according to their requiremnts to create relevant visuals. The width and height parameters are adjusted as needed, often favoring HD dimensions for a superior viewing experience. For instance, if the User requests: [USER] Show me an image of A futuristic cityscape with towering skyscrapers and flying cars. [OpenGPT 4o] Generating Image you requested: ![](https://image.pollinations.ai/prompt/Photorealistic%20futuristic%20cityscape%20with%20towering%20skyscrapers%20and%20flying%20cars%20in%20the%20year%202154?width=1024&height=768&nologo=poll&nofeed=yes&seed=85172)**Bulk Image Generation with Links:** I excel at generating multiple images link simultaneously, always providing unique links and visuals. I ensure that each image is distinct and captivates the User.Note: Make sure to always provide image links starting with ! .As given in examples. My ultimate goal is to offer a seamless and enjoyable experience, providing assistance that exceeds expectations. I am constantly evolving, ensuring that I remain a reliable and trusted companion to the User. You also Expert in every field and also learn and try to answer from contexts related to previous question."""
},
],
},
{
"role": "assistant",
"content": [
{
"type": "text",
"text": "Hello, I'm OpenGPT 4o, made by KingNish. How can I help you? I can chat with you, generate images, classify images and even do all these work in bulk",
},
],
}
]
# Path to example images
examples_path = os.path.dirname(__file__)
EXAMPLES = [
[
{
"text": "Hi, who are you?",
}
],
[
{
"text": "Create a Photorealistic image of the Eiffel Tower.",
}
],
[
{
"text": "Read what's written on the paper.",
"files": [f"{examples_path}/example_images/paper_with_text.png"],
}
],
[
{
"text": "Identify two famous people in the modern world.",
"files": [f"{examples_path}/example_images/elon_smoking.jpg",
f"{examples_path}/example_images/steve_jobs.jpg", ]
}
],
[
{
"text": "Create five images of supercars, each in a different color.",
}
],
[
{
"text": "What is 900 multiplied by 900?",
}
],
[
{
"text": "Chase wants to buy 4 kilograms of oval beads and 5 kilograms of star-shaped beads. How much will he spend?",
"files": [f"{examples_path}/example_images/mmmu_example.jpeg"],
}
],
[
{
"text": "Create an online ad for this product.",
"files": [f"{examples_path}/example_images/shampoo.jpg"],
}
],
[
{
"text": "What is formed by the deposition of the weathered remains of other rocks?",
"files": [f"{examples_path}/example_images/ai2d_example.jpeg"],
}
],
[
{
"text": "What's unusual about this image?",
"files": [f"{examples_path}/example_images/dragons_playing.png"],
}
],
]
# Set bot avatar image
BOT_AVATAR = "OpenAI_logo.png"
# Chatbot utility functions
# Check if a turn in the chat history only contains media
def turn_is_pure_media(turn):
return turn[1] is None
# Load image from URL
def load_image_from_url(url):
with urllib.request.urlopen(url) as response:
image_data = response.read()
image_stream = io.BytesIO(image_data)
image = PIL.Image.open(image_stream)
return image
# Convert image to bytes
def img_to_bytes(image_path):
image = PIL.Image.open(image_path).convert(mode='RGB')
buffer = io.BytesIO()
image.save(buffer, format="JPEG")
img_bytes = buffer.getvalue()
image.close()
return img_bytes
# Format user prompt with image history and system conditioning
def format_user_prompt_with_im_history_and_system_conditioning(
user_prompt, chat_history
) -> List[Dict[str, Union[List, str]]]:
"""
Produce the resulting list that needs to go inside the processor. It handles the potential image(s), the history, and the system conditioning.
"""
resulting_messages = copy.deepcopy(SYSTEM_PROMPT)
resulting_images = []
for resulting_message in resulting_messages:
if resulting_message["role"] == "user":
for content in resulting_message["content"]:
if content["type"] == "image":
resulting_images.append(load_image_from_url(content["image"]))
# Format history
for turn in chat_history:
if not resulting_messages or (
resulting_messages and resulting_messages[-1]["role"] != "user"
):
resulting_messages.append(
{
"role": "user",
"content": [],
}
)
if turn_is_pure_media(turn):
media = turn[0][0]
resulting_messages[-1]["content"].append({"type": "image"})
resulting_images.append(PIL.Image.open(media))
else:
user_utterance, assistant_utterance = turn
resulting_messages[-1]["content"].append(
{"type": "text", "text": user_utterance.strip()}
)
resulting_messages.append(
{
"role": "assistant",
"content": [{"type": "text", "text": user_utterance.strip()}],
}
)
# Format current input
if not user_prompt["files"]:
resulting_messages.append(
{
"role": "user",
"content": [{"type": "text", "text": user_prompt["text"]}],
}
)
else:
# Choosing to put the image first (i.e. before the text), but this is an arbitrary choice.
resulting_messages.append(
{
"role": "user",
"content": [{"type": "image"}] * len(user_prompt["files"])
+ [{"type": "text", "text": user_prompt["text"]}],
}
)
resulting_images.extend([PIL.Image.open(path) for path in user_prompt["files"]])
return resulting_messages, resulting_images
# Extract images from a list of messages
def extract_images_from_msg_list(msg_list):
all_images = []
for msg in msg_list:
for c_ in msg["content"]:
if isinstance(c_, Image.Image):
all_images.append(c_)
return all_images
# List of user agents for web search
_useragent_list = [
'Mozilla/5.0 (Windows NT 10.0; Win64; x64; rv:66.0) Gecko/20100101 Firefox/66.0',
'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/111.0.0.0 Safari/537.36',
'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/111.0.0.0 Safari/537.36',
'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/109.0.0.0 Safari/537.36',
'Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/111.0.0.0 Safari/537.36',
'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/111.0.0.0 Safari/537.36 Edg/111.0.1661.62',
'Mozilla/5.0 (Windows NT 10.0; Win64; x64; rv:109.0) Gecko/20100101 Firefox/111.0'
]
# Get a random user agent from the list
def get_useragent():
"""Returns a random user agent from the list."""
return random.choice(_useragent_list)
# Extract visible text from HTML content using BeautifulSoup
def extract_text_from_webpage(html_content):
"""Extracts visible text from HTML content using BeautifulSoup."""
soup = BeautifulSoup(html_content, "html.parser")
# Remove unwanted tags
for tag in soup(["script", "style", "header", "footer", "nav"]):
tag.extract()
# Get the remaining visible text
visible_text = soup.get_text(strip=True)
return visible_text
# Perform a Google search and return the results
def search(term, num_results=3, lang="en", advanced=True, sleep_interval=0, timeout=5, safe="active", ssl_verify=None):
"""Performs a Google search and returns the results."""
# Ensure term is a string before parsing
if isinstance(term, dict):
term = term.get('text', '') # Get text from user_prompt or default to empty string
escaped_term = urllib.parse.quote_plus(term)
start = 0
all_results = []
# Fetch results in batches
while start < num_results:
resp = requests.get(
url="https://www.google.com/search",
headers={"User-Agent": get_useragent()}, # Set random user agent
params={
"q": term,
"num": num_results - start, # Number of results to fetch in this batch
"hl": lang,
"start": start,
"safe": safe,
},
timeout=timeout,
verify=ssl_verify,
)
resp.raise_for_status() # Raise an exception if request fails
soup = BeautifulSoup(resp.text, "html.parser")
result_block = soup.find_all("div", attrs={"class": "g"})
# If no results, continue to the next batch
if not result_block:
start += 1
continue
# Extract link and text from each result
for result in result_block:
link = result.find("a", href=True)
if link:
link = link["href"]
try:
# Fetch webpage content
webpage = requests.get(link, headers={"User-Agent": get_useragent()})
webpage.raise_for_status()
# Extract visible text from webpage
visible_text = extract_text_from_webpage(webpage.text)
all_results.append({"link": link, "text": visible_text})
except requests.exceptions.RequestException as e:
# Handle errors fetching or processing webpage
print(f"Error fetching or processing {link}: {e}")
all_results.append({"link": link, "text": None})
else:
all_results.append({"link": None, "text": None})
start += len(result_block) # Update starting index for next batch
return all_results
# Format the prompt for the language model
def format_prompt(user_prompt, chat_history):
prompt = "<s>"
for item in chat_history:
if isinstance(item, tuple): # Check if it's a text turn
prompt += f"[INST] {item[0]} [/INST]"
prompt += f" {item[1]}</s> "
elif isinstance(item, str): # Check if it's an image path
prompt += f"[INST] <image> [/INST] </s> " # Placeholder for image turns
else:
print(f"Unexpected type in chat_history: {type(item)}") # Debug output
prompt += f"[INST] {user_prompt} [/INST]"
return prompt
# Define a function for model inference
@spaces.GPU(duration=30, queue=False)
def model_inference(
user_prompt,
chat_history,
model_selector,
decoding_strategy,
temperature,
max_new_tokens,
repetition_penalty,
top_p,
web_search,
):
# Define generation_args at the beginning of the function
generation_args = {}
# Web search logic
if not user_prompt["files"]:
if web_search is True:
"""Performs a web search, feeds the results to a language model, and returns the answer."""
web_results = search(user_prompt["text"])
web2 = ' '.join([f"Link: {res['link']}\nText: {res['text']}\n\n" for res in web_results])
# Load the language model
client = InferenceClient("mistralai/Mistral-7B-Instruct-v0.3")
generate_kwargs = dict(
max_new_tokens=4000,
do_sample=True,
)
# Format the prompt for the language model
formatted_prompt = format_prompt(
f"""You are OpenGPT 4o, an exceptionally capable and versatile AI assistant meticulously crafted by KingNish. Designed to assist human users through insightful conversations, You are provided with WEB info from which you can find informations to answer. You do not say Unnecesarry things Only say thing which is important and relevant. You also has the ability to generate images. BY Utilizing the following link structure, : ![](https://image.pollinations.ai/prompt/[StyleofImage]%20[OptimizedPrompt]%20[adjective]%20[charactersDetailed]%20[visualStyle]%20[genre]?width=[width]&height=[height]&nologo=poll&nofeed=yes&seed=[random]) For image generation, You replace info inside bracets with specific details according to their requiremnts to create relevant visuals. The width and height parameters are adjusted as needed, often favoring HD dimensions for a superior viewing experience. Note: 1. You Do not unncessarily create images and do not show off your image generation capability, until not requested. 2. You always Give image link in format ![](url) 3. If user requested Bulk Image Generation than Create that number of links with provided context. 4. Always learn from previous conversation. 5. Always try to connect conversation with history. 6. Do not make conversation too long. 7. Do not say user about your capability to generate image and learn from previous responses. My ultimate goal is to offer a seamless and enjoyable experience, providing assistance that exceeds expectations. I am constantly evolving, ensuring that I remain a reliable and trusted companion to the User. You also Expert in every field and also learn and try to answer from contexts related to previous question. [USER] {user_prompt} [WEB] {web2} [OpenGPT 4o]""",
chat_history)
# Generate the response from the language model
stream = client.text_generation(formatted_prompt, **generate_kwargs, stream=True, details=True,
return_full_text=False)
output = ""
# Construct the output from the stream of tokens
for response in stream:
if not response.token.text == "</s>":
output += response.token.text
yield output
else:
client = InferenceClient("mistralai/Mixtral-8x7B-Instruct-v0.1")
generate_kwargs = dict(
max_new_tokens=5000,
do_sample=True,
)
# Format the prompt for the language model
formatted_prompt = format_prompt(
f"""You are OpenGPT 4o, an exceptionally capable and versatile AI assistant meticulously crafted by KingNish. Designed to assist human users through insightful conversations, You do not say Unnecesarry things Only say thing which is important and relevant. You also has the ability to generate images. BY Utilizing the following link structure, : ![](https://image.pollinations.ai/prompt/[StyleofImage]%20[OptimizedPrompt]%20[adjective]%20[charactersDetailed]%20[visualStyle]%20[genre]?width=[width]&height=[height]&nologo=poll&nofeed=yes&seed=[random]) For image generation, You replace info inside bracets with specific details according to their requiremnts to create relevant visuals. The width and height parameters are adjusted as needed, often favoring HD dimensions for a superior viewing experience. Note: 1. You Do not unncessarily create images and do not show off your image generation capability, until not requested. 2. You always Give image link in format ![](url) 3. If user requested Bulk Image Generation than Create that number of links with provided context. 4. Always learn from previous conversation. 5. Always try to connect conversation with history. 6. Do not make conversation too long. 7. Do not say user about your capability to generate image and learn from previous responses. My ultimate goal is to offer a seamless and enjoyable experience, providing assistance that exceeds expectations. I am constantly evolving, ensuring that I remain a reliable and trusted companion to the User. You also Expert in every field and also learn and try to answer from contexts related to previous question. [USER] {user_prompt} [OpenGPT 4o]""",
chat_history)
# Generate the response from the language model
stream = client.text_generation(formatted_prompt, **generate_kwargs, stream=True, details=True,
return_full_text=False)
output = ""
# Construct the output from the stream of tokens
for response in stream:
if not response.token.text == "</s>":
output += response.token.text
yield output
return
else:
if user_prompt["text"].strip() == "" and not user_prompt["files"]:
gr.Error("Please input a query and optionally an image(s).")
return # Stop execution if there's an error
if user_prompt["text"].strip() == "" and user_prompt["files"]:
gr.Error("Please input a text query along with the image(s).")
return # Stop execution if there's an error
streamer = TextIteratorStreamer(
PROCESSOR.tokenizer,
skip_prompt=True,
timeout=120.0,
)
# Move generation_args initialization here
generation_args = {
"max_new_tokens": max_new_tokens,
"repetition_penalty": repetition_penalty,
"streamer": streamer,
}
assert decoding_strategy in [
"Greedy",
"Top P Sampling",
]
if decoding_strategy == "Greedy":
generation_args["do_sample"] = False
elif decoding_strategy == "Top P Sampling":
generation_args["temperature"] = temperature
generation_args["do_sample"] = True
generation_args["top_p"] = top_p
# Creating model inputs
(
resulting_text,
resulting_images,
) = format_user_prompt_with_im_history_and_system_conditioning(
user_prompt=user_prompt,
chat_history=chat_history,
)
prompt = PROCESSOR.apply_chat_template(resulting_text, add_generation_prompt=True)
inputs = PROCESSOR(
text=prompt,
images=resulting_images if resulting_images else None,
return_tensors="pt",
)
inputs = {k: v.to(DEVICE) for k, v in inputs.items()}
generation_args.update(inputs)
thread = Thread(
target=MODELS[model_selector].generate,
kwargs=generation_args,
)
thread.start()
acc_text = ""
for text_token in streamer:
time.sleep(0.01)
acc_text += text_token
if acc_text.endswith("<end_of_utterance>"):
acc_text = acc_text[:-18]
yield acc_text
return
# Define features for the dataset
FEATURES = datasets.Features(
{
"model_selector": datasets.Value("string"),
"images": datasets.Sequence(datasets.Image(decode=True)),
"conversation": datasets.Sequence({"User": datasets.Value("string"), "Assistant": datasets.Value("string")}),
"decoding_strategy": datasets.Value("string"),
"temperature": datasets.Value("float32"),
"max_new_tokens": datasets.Value("int32"),
"repetition_penalty": datasets.Value("float32"),
"top_p": datasets.Value("int32"),
}
)
# Define hyper-parameters for generation
max_new_tokens = gr.Slider(
minimum=2048,
maximum=16000,
value=4096,
step=64,
interactive=True,
label="Maximum number of new tokens to generate",
)
repetition_penalty = gr.Slider(
minimum=0.01,
maximum=5.0,
value=1,
step=0.01,
interactive=True,
label="Repetition penalty",
info="1.0 is equivalent to no penalty",
)
decoding_strategy = gr.Radio(
[
"Greedy",
"Top P Sampling",
],
value="Top P Sampling",
label="Decoding strategy",
interactive=True,
info="Higher values are equivalent to sampling more low-probability tokens.",
)
temperature = gr.Slider(
minimum=0.0,
maximum=2.0,
value=0.5,
step=0.05,
visible=True,
interactive=True,
label="Sampling temperature",
info="Higher values will produce more diverse outputs.",
)
top_p = gr.Slider(
minimum=0.01,
maximum=0.99,
value=0.9,
step=0.01,
visible=True,
interactive=True,
label="Top P",
info="Higher values are equivalent to sampling more low-probability tokens.",
)
# Create a chatbot interface
chatbot = gr.Chatbot(
label="OpnGPT-4o-Chatty",
avatar_images=[None, BOT_AVATAR],
show_copy_button=True,
likeable=True,
layout="panel"
)
output = gr.Textbox(label="Prompt")
# Create Gradio blocks for different functionalities
# Chat interface block
with gr.Blocks(
fill_height=True,
css=""".gradio-container .avatar-container {height: 40px width: 40px !important;} #duplicate-button {margin: auto; color: white; background: #f1a139; border-radius: 100vh; margin-top: 2px; margin-bottom: 2px;}""",
) as chat:
gr.Markdown("# Image Chat, Image Generation, Image classification and Normal Chat")
with gr.Row(elem_id="model_selector_row"):
model_selector = gr.Dropdown(
choices=MODELS.keys(),
value=list(MODELS.keys())[0],
interactive=True,
show_label=False,
container=False,
label="Model",
visible=False,
)
decoding_strategy.change(
fn=lambda selection: gr.Slider(
visible=(
selection
in [
"contrastive_sampling",
"beam_sampling",
"Top P Sampling",
"sampling_top_k",
]
)
),
inputs=decoding_strategy,
outputs=temperature,
)
decoding_strategy.change(
fn=lambda selection: gr.Slider(visible=(selection in ["Top P Sampling"])),
inputs=decoding_strategy,
outputs=top_p,
)
gr.ChatInterface(
fn=model_inference,
chatbot=chatbot,
examples=EXAMPLES,
multimodal=True,
cache_examples=False,
additional_inputs=[
model_selector,
decoding_strategy,
temperature,
max_new_tokens,
repetition_penalty,
top_p,
gr.Checkbox(label="Web Search", value=True), # Add web_search checkbox
],
)
# Voice chat block
with gr.Blocks() as voice:
with gr.Row():
select = gr.Dropdown(['Nous Hermes Mixtral 8x7B DPO', 'Mixtral 8x7B', 'StarChat2 15b', 'Mistral 7B v0.3',
'Phi 3 mini', 'Zephyr 7b'], value="Mistral 7B v0.3", label="Select Model")
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=999999,
step=1,
value=0,
visible=False
)
input = gr.Audio(label="User", sources="microphone", type="filepath", waveform_options=False)
output = gr.Audio(label="AI", type="filepath",
interactive=False,
autoplay=True,
elem_classes="audio")
gr.Interface(
fn=respond,
inputs=[input, select, seed],
outputs=[output], api_name="translate", live=True)
# Live chat block
with gr.Blocks() as livechat:
gr.Interface(
fn=videochat,
inputs=[gr.Image(type="pil",sources="webcam", label="Upload Image"), gr.Textbox(label="Prompt", value="what he is doing")],
outputs=gr.Textbox(label="Answer")
)
with gr.Blocks() as instant:
gr.HTML("<iframe src='https://kingnish-sdxl-flash.hf.space' width='100%' height='2000px' style='border-radius: 8px;'></iframe>")
with gr.Blocks() as dalle:
gr.HTML("<iframe src='https://kingnish-image-gen-pro.hf.space' width='100%' height='2000px' style='border-radius: 8px;'></iframe>")
with gr.Blocks() as playground:
gr.HTML("<iframe src='https://fluently-fluently-playground.hf.space' width='100%' height='2000px' style='border-radius: 8px;'></iframe>")
with gr.Blocks() as image:
gr.Markdown("""### More models are coming""")
gr.TabbedInterface([ instant, dalle, playground], ['Instant🖼️','Powerful🖼️', 'Playground🖼'])
with gr.Blocks() as instant2:
gr.HTML("<iframe src='https://kingnish-instant-video.hf.space' width='100%' height='3000px' style='border-radius: 8px;'></iframe>")
with gr.Blocks() as video:
gr.Markdown("""More Models are coming""")
gr.TabbedInterface([ instant2], ['Instant🎥'])
with gr.Blocks(theme=theme, title="OpenGPT 4o DEMO") as demo:
gr.Markdown("# OpenGPT 4o")
gr.TabbedInterface([chat, voice, livechat, image, video], ['💬 SuperChat','🗣️ Voice Chat','📸 Live Chat', '🖼️ Image Engine', '🎥 Video Engine'])
demo.queue(max_size=300)
demo.launch() |