Spaces:
Running
Running
# Copyright 2024 THUDM and the LlamaFactory team. | |
# | |
# This code is inspired by the THUDM's ChatGLM implementation. | |
# https://github.com/THUDM/ChatGLM-6B/blob/main/cli_demo.py | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import asyncio | |
from threading import Thread | |
from typing import TYPE_CHECKING, Any, AsyncGenerator, Dict, Generator, List, Optional, Sequence | |
from ..extras.misc import torch_gc | |
from ..hparams import get_infer_args | |
from .hf_engine import HuggingfaceEngine | |
from .vllm_engine import VllmEngine | |
if TYPE_CHECKING: | |
from numpy.typing import NDArray | |
from .base_engine import BaseEngine, Response | |
def _start_background_loop(loop: "asyncio.AbstractEventLoop") -> None: | |
asyncio.set_event_loop(loop) | |
loop.run_forever() | |
class ChatModel: | |
def __init__(self, args: Optional[Dict[str, Any]] = None) -> None: | |
model_args, data_args, finetuning_args, generating_args = get_infer_args(args) | |
if model_args.infer_backend == "huggingface": | |
self.engine: "BaseEngine" = HuggingfaceEngine(model_args, data_args, finetuning_args, generating_args) | |
elif model_args.infer_backend == "vllm": | |
self.engine: "BaseEngine" = VllmEngine(model_args, data_args, finetuning_args, generating_args) | |
else: | |
raise NotImplementedError("Unknown backend: {}".format(model_args.infer_backend)) | |
self._loop = asyncio.new_event_loop() | |
self._thread = Thread(target=_start_background_loop, args=(self._loop,), daemon=True) | |
self._thread.start() | |
task = asyncio.run_coroutine_threadsafe(self.engine.start(), self._loop) | |
task.result() | |
def chat( | |
self, | |
messages: Sequence[Dict[str, str]], | |
system: Optional[str] = None, | |
tools: Optional[str] = None, | |
image: Optional["NDArray"] = None, | |
**input_kwargs, | |
) -> List["Response"]: | |
task = asyncio.run_coroutine_threadsafe(self.achat(messages, system, tools, image, **input_kwargs), self._loop) | |
return task.result() | |
async def achat( | |
self, | |
messages: Sequence[Dict[str, str]], | |
system: Optional[str] = None, | |
tools: Optional[str] = None, | |
image: Optional["NDArray"] = None, | |
**input_kwargs, | |
) -> List["Response"]: | |
return await self.engine.chat(messages, system, tools, image, **input_kwargs) | |
def stream_chat( | |
self, | |
messages: Sequence[Dict[str, str]], | |
system: Optional[str] = None, | |
tools: Optional[str] = None, | |
image: Optional["NDArray"] = None, | |
**input_kwargs, | |
) -> Generator[str, None, None]: | |
generator = self.astream_chat(messages, system, tools, image, **input_kwargs) | |
while True: | |
try: | |
task = asyncio.run_coroutine_threadsafe(generator.__anext__(), self._loop) | |
yield task.result() | |
except StopAsyncIteration: | |
break | |
async def astream_chat( | |
self, | |
messages: Sequence[Dict[str, str]], | |
system: Optional[str] = None, | |
tools: Optional[str] = None, | |
image: Optional["NDArray"] = None, | |
**input_kwargs, | |
) -> AsyncGenerator[str, None]: | |
async for new_token in self.engine.stream_chat(messages, system, tools, image, **input_kwargs): | |
yield new_token | |
def get_scores( | |
self, | |
batch_input: List[str], | |
**input_kwargs, | |
) -> List[float]: | |
task = asyncio.run_coroutine_threadsafe(self.aget_scores(batch_input, **input_kwargs), self._loop) | |
return task.result() | |
async def aget_scores( | |
self, | |
batch_input: List[str], | |
**input_kwargs, | |
) -> List[float]: | |
return await self.engine.get_scores(batch_input, **input_kwargs) | |
def run_chat() -> None: | |
try: | |
import platform | |
if platform.system() != "Windows": | |
import readline # noqa: F401 | |
except ImportError: | |
print("Install `readline` for a better experience.") | |
chat_model = ChatModel() | |
messages = [] | |
print("Welcome to the CLI application, use `clear` to remove the history, use `exit` to exit the application.") | |
while True: | |
try: | |
query = input("\nUser: ") | |
except UnicodeDecodeError: | |
print("Detected decoding error at the inputs, please set the terminal encoding to utf-8.") | |
continue | |
except Exception: | |
raise | |
if query.strip() == "exit": | |
break | |
if query.strip() == "clear": | |
messages = [] | |
torch_gc() | |
print("History has been removed.") | |
continue | |
messages.append({"role": "user", "content": query}) | |
print("Assistant: ", end="", flush=True) | |
response = "" | |
for new_text in chat_model.stream_chat(messages): | |
print(new_text, end="", flush=True) | |
response += new_text | |
print() | |
messages.append({"role": "assistant", "content": response}) | |