File size: 5,500 Bytes
2852136
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
# Copyright 2024 THUDM and the LlamaFactory team.
#
# This code is inspired by the THUDM's ChatGLM implementation.
# https://github.com/THUDM/ChatGLM-6B/blob/main/cli_demo.py
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import asyncio
from threading import Thread
from typing import TYPE_CHECKING, Any, AsyncGenerator, Dict, Generator, List, Optional, Sequence

from ..extras.misc import torch_gc
from ..hparams import get_infer_args
from .hf_engine import HuggingfaceEngine
from .vllm_engine import VllmEngine


if TYPE_CHECKING:
    from numpy.typing import NDArray

    from .base_engine import BaseEngine, Response


def _start_background_loop(loop: "asyncio.AbstractEventLoop") -> None:
    asyncio.set_event_loop(loop)
    loop.run_forever()


class ChatModel:
    def __init__(self, args: Optional[Dict[str, Any]] = None) -> None:
        model_args, data_args, finetuning_args, generating_args = get_infer_args(args)
        if model_args.infer_backend == "huggingface":
            self.engine: "BaseEngine" = HuggingfaceEngine(model_args, data_args, finetuning_args, generating_args)
        elif model_args.infer_backend == "vllm":
            self.engine: "BaseEngine" = VllmEngine(model_args, data_args, finetuning_args, generating_args)
        else:
            raise NotImplementedError("Unknown backend: {}".format(model_args.infer_backend))

        self._loop = asyncio.new_event_loop()
        self._thread = Thread(target=_start_background_loop, args=(self._loop,), daemon=True)
        self._thread.start()
        task = asyncio.run_coroutine_threadsafe(self.engine.start(), self._loop)
        task.result()

    def chat(
        self,
        messages: Sequence[Dict[str, str]],
        system: Optional[str] = None,
        tools: Optional[str] = None,
        image: Optional["NDArray"] = None,
        **input_kwargs,
    ) -> List["Response"]:
        task = asyncio.run_coroutine_threadsafe(self.achat(messages, system, tools, image, **input_kwargs), self._loop)
        return task.result()

    async def achat(
        self,
        messages: Sequence[Dict[str, str]],
        system: Optional[str] = None,
        tools: Optional[str] = None,
        image: Optional["NDArray"] = None,
        **input_kwargs,
    ) -> List["Response"]:
        return await self.engine.chat(messages, system, tools, image, **input_kwargs)

    def stream_chat(
        self,
        messages: Sequence[Dict[str, str]],
        system: Optional[str] = None,
        tools: Optional[str] = None,
        image: Optional["NDArray"] = None,
        **input_kwargs,
    ) -> Generator[str, None, None]:
        generator = self.astream_chat(messages, system, tools, image, **input_kwargs)
        while True:
            try:
                task = asyncio.run_coroutine_threadsafe(generator.__anext__(), self._loop)
                yield task.result()
            except StopAsyncIteration:
                break

    async def astream_chat(
        self,
        messages: Sequence[Dict[str, str]],
        system: Optional[str] = None,
        tools: Optional[str] = None,
        image: Optional["NDArray"] = None,
        **input_kwargs,
    ) -> AsyncGenerator[str, None]:
        async for new_token in self.engine.stream_chat(messages, system, tools, image, **input_kwargs):
            yield new_token

    def get_scores(
        self,
        batch_input: List[str],
        **input_kwargs,
    ) -> List[float]:
        task = asyncio.run_coroutine_threadsafe(self.aget_scores(batch_input, **input_kwargs), self._loop)
        return task.result()

    async def aget_scores(
        self,
        batch_input: List[str],
        **input_kwargs,
    ) -> List[float]:
        return await self.engine.get_scores(batch_input, **input_kwargs)


def run_chat() -> None:
    try:
        import platform

        if platform.system() != "Windows":
            import readline  # noqa: F401
    except ImportError:
        print("Install `readline` for a better experience.")

    chat_model = ChatModel()
    messages = []
    print("Welcome to the CLI application, use `clear` to remove the history, use `exit` to exit the application.")

    while True:
        try:
            query = input("\nUser: ")
        except UnicodeDecodeError:
            print("Detected decoding error at the inputs, please set the terminal encoding to utf-8.")
            continue
        except Exception:
            raise

        if query.strip() == "exit":
            break

        if query.strip() == "clear":
            messages = []
            torch_gc()
            print("History has been removed.")
            continue

        messages.append({"role": "user", "content": query})
        print("Assistant: ", end="", flush=True)

        response = ""
        for new_text in chat_model.stream_chat(messages):
            print(new_text, end="", flush=True)
            response += new_text
        print()
        messages.append({"role": "assistant", "content": response})